, Volume 319, Issue 3, pp 429-438
Date: 26 Jan 2005

In vivo chondrogenesis of adult bone-marrow-derived autologous mesenchymal stem cells

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The purpose of this study has been to investigate the possible effects of the normal joint cavity environment on chondrocytic differentiation of bone-marrow-derived mesenchymal stem cells (MSCs). Autologous bone marrow was aspirated from the iliac crest of male sheep. MSCs were purified, expanded, and labeled with the fluorescent dye PKH26. Labeled MSCs were then grown on a three-dimensional porous scaffold of poly (L-lactic-co-glycolic acid) in vitro and implanted into the joint cavity by a surgical procedure. At 4 or 8 weeks after implantation, the implants were removed for histochemical and immunohistochemical analysis. The cells labeled with red fluorescent PKH26 in the implants expressed type II collagen and synthesized sulfated proteoglycans. However, the osteoblast-specific marker, osteocalcin, was not detected by immunohistochemistry indicating that the implanted MSCs had not differentiated into osteoblasts by being directly exposed to the normal joint cavity. To investigate the possible factors involved in chondrocytic differentiation of MSCs further, we co-cultured sheep MSCs with the main components of the normal joint cavity, viz., synovial fluid or synovial cells, in vitro. After 1 or 2 weeks of co-culture, the MSCs in both co-culture systems expressed markers of chondrogenesis. These results suggest that synovial fluid and synovium from normal joint cavity are important for the chondrocytic differentiation of adult bone-marrow-derived MSCs.

This work was supported by the National Natural Science Foundation of China (nos. 39900036, 20174006, and 20221402), the National Advanced Technology Programs of China (nos. 2003AA744051, 2003AA205041), the Award Foundation for Young Teachers from the Ministry of Education, 973 project (no. G1999054306-03), and the 248 key innovative project of Beijing (no. H010210190123).