, Volume 318, Issue 1, pp 15-22
Date: 29 Jul 2004

Midbrain-derived neural stem cells: from basic science to therapeutic approaches

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Neural stem cells (NSCs) are a subtype of tissue-specific progenitor cells capable of extended self-renewal and the ability to generate all major cell types of nervous tissue, such as neurons, astroglia and oligodendroglial cells. Recent studies suggest that salient patterning in anterior–posterior and dorsal–ventral axes occurs early, concomitantly with neural induction and therefore stem cells and restricted precursors exhibit regionalization. Fetal mesencephalic NSCs can be isolated and expanded in vitro for many months while retaining their potential to differentiate into glia and neurons, with a subset of neurons displaying all the major properties of mature functional dopaminergic neurons. Since Parkinson’s disease (PD) is characterized by the loss of a specific type of dopaminergic cells, the prospect of replacing the missing or damaged cells is very attractive in PD. Thus, mesencephalic NSCs might serve as a new and continuous source of dopaminergic neurons for regenerative strategies in this neurodegenerative disorder. This review discusses new data concerning the cell biology and therapeutic potential of NSCs derived from the midbrain region of the central nervous system.

The work of the authors was supported in part by the Interdisziplinäres Zentrum für klinische Forschung (IZKF) Ulm (Project D6) to A.S., the BMBF (Polish-German Cooperation in Neuroscience Program) to A.S., the Ministerium für Wissenschaft und Kultur Baden-Württemberg (Landesforschungsschwerpunkt “Neurodegeneration und Neuroregeneration”) to A.S., and the Landesstiftung Baden-Württemberg (Förderprogramm “Adulte Stammzellen”) to A.S. M.S. was supported by a fellowship from the IZKF Ulm