, Volume 313, Issue 3, pp 301-311

Endoreplication and polyploidy in primary culture of rat hepatic stellate cells

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Hepatic stellate cells (HSCs), the pericytes of hepatic sinusoids, and liver myofibroblasts (rMFs), cells located in the portal field and around the pericentral area, are the principal fibrogenic cell types of the liver. In cases of liver damage HSCs undergo "activation," i.e., they acquire a myofibroblast-like appearance and synthesize huge amounts of extracellular matrix proteins (ECMs). Their proliferation ability, however, is a matter of debate. In fact, during culture the number of rat HSCs decreases, while DNA synthesis activity and DNA content per cell increase (4±0.6 times). Together with the decrease in cell number (60±19% at day 6 of primary culture compared to day 3), cell volume increases and many HSCs become multinuclear. On the other hand, in cultures of rMFs, cell number increases along with DNA synthesis, and these cells do not become multinuclear. "Activated" HSCs produce higher levels of cyclin D1 and E1 transcripts than rMFs, which correlates with their increased levels of phosphorylated retinoblastoma (Rb) protein. In activated HSCs DNA synthesis seems to be associated with polyploidy and increase in cell volume, while DNA synthesis is followed by mitosis in rMFs.

This work was supported by the Deutsche Forschungsgemeinschaft SFB 402, project C6