Human Genetics

, Volume 101, Issue 3, pp 255–262

Spectral karyotyping refines cytogenetic diagnostics of constitutional chromosomal abnormalities

  • E. Schröck
  • T. Veldman
  • Hesed Padilla-Nash
  • Y. Ning
  • Jack Spurbeck
  • Syed Jalal
  • Lisa G. Shaffer
  • Peter Papenhausen
  • Chahira Kozma
  • Mary C. Phelan
  • Eigil Kjeldsen
  • Stephen A. Schonberg
  • Patricia O’Brien
  • Les Biesecker
  • Stan du Manoir
  • Thomas Ried
Original investigation

DOI: 10.1007/s004390050626

Cite this article as:
Schröck, E., Veldman, T., Padilla-Nash, H. et al. Hum Genet (1997) 101: 255. doi:10.1007/s004390050626

Abstract

Karyotype analysis by chromosome banding is the standard method for identifying numerical and structural chromosomal aberrations in pre- and postnatal cytogenetics laboratories. However, the chromosomal origins of markers, subtle translocations, or complex chromosomal rearrangements are often difficult to identify with certainty. We have developed a novel karyotyping technique, termed spectral karyotyping (SKY), which is based on the simultaneous hybridization of 24 chromosome-specific painting probes labeled with different fluorochromes or fluorochrome combinations. The measurement of defined emission spectra by means of interferometer-based spectral imaging allows for the definitive discernment of all human chromosomes in different colors. Here, we report the comprehensive karyotype analysis of 16 samples from different cytogenetic laboratories by merging conventional cytogenetic methodology and spectral karyotyping. This approach could become a powerful tool for the cytogeneticists, because it results in a considerable improvement of karyotype analysis by identifying chromosomal aberrations not previously detected by G-banding alone. Advantages, limitations, and future directions of spectral karyotyping are discussed.

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • E. Schröck
    • 1
  • T. Veldman
    • 1
  • Hesed Padilla-Nash
    • 1
  • Y. Ning
    • 1
  • Jack Spurbeck
    • 2
  • Syed Jalal
    • 2
  • Lisa G. Shaffer
    • 3
  • Peter Papenhausen
    • 4
  • Chahira Kozma
    • 5
  • Mary C. Phelan
    • 6
  • Eigil Kjeldsen
    • 7
  • Stephen A. Schonberg
    • 8
  • Patricia O’Brien
    • 10
  • Les Biesecker
    • 9
  • Stan du Manoir
    • 1
  • Thomas Ried
    • 1
  1. 1.Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, 49 Convent Drive, Room 4C36, Bethesda, Maryland, 20892–4470, USA Tel.: +1-301-402-2008, Fax: +1-301-402-1204; e-mail: eschrock@nhgri.nih.govUS
  2. 2.Mayo Clinic, Cytogenetic Laboratory, Rochester, Minn., USAUS
  3. 3.Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex., USAUS
  4. 4.Labcorp, Research Triangle Park, N.C., USAUS
  5. 5.Georgetown University, Department of Pediatrics, Washington, D.C., USAUS
  6. 6.Greenwood Genetic Center, Greenwood, S.C., USAUS
  7. 7.Department of Clinical Genetics, Aarhus University Hospital, Aarhus, DenmarkDK
  8. 8.American Medical Laboratories, Chantilly, Va., USAUS
  9. 9.Laboratory for Genetic Disease Research, National Human Genome Research Institue, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892-4470, USAUS
  10. 10.Department of Pathology, Cambridge University, Cambridge, UKGB