, Volume 107, Issue 4, pp 376-384

Components of the human spindle checkpoint control mechanism localize specifically to the active centromere on dicentric chromosomes

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The spindle checkpoint control mechanism functions to ensure faithful chromosome segregation by delaying cell division until all chromosomes are correctly oriented on the mitotic spindle. Initially identified in budding yeast, several mammalian spindle checkpoint-associated proteins have recently been identified and partially characterized. These proteins associate with all active human centromeres, including neocentromeres, in the early stages of mitosis prior to the commencement of anaphase. We have examined the status of proteins associated with the checkpoint protein complex (BUB1, BUBR1, BUB3, MAD2), the anaphase-promoting complex (Tsg24, p55CDC), and other proteins associated with mitotic checkpoint control (ERK1, 3F3/2 epitope, hZW10), on a human dicentric chromosome. Each of these proteins was found to specifically associate with only the active centromere, suggesting that only active centromeres participate in the spindle checkpoint. This finding complements previous studies on multicentric chromosomes demonstrating specific association of structural and motor-related centromere proteins with active centromeres, and suggests that centromere inactivation is accompanied by loss of all functionally important centromere proteins.

Electronic Publication