Skip to main content

Advertisement

Log in

Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Signaling by the glial cell line-derived neurotrophic factor (GDNF)-RET receptor tyrosine kinase and SPRY1, a RET repressor, is essential for early urinary tract development. Individual or a combination of GDNF, RET and SPRY1 mutant alleles in mice cause renal malformations reminiscent of congenital anomalies of the kidney or urinary tract (CAKUT) in humans and distinct from renal agenesis phenotype in complete GDNF or RET-null mice. We sequenced GDNF, SPRY1 and RET in 122 unrelated living CAKUT patients to discover deleterious mutations that cause CAKUT. Novel or rare deleterious mutations in GDNF or RET were found in six unrelated patients. A family with duplicated collecting system had a novel mutation, RET-R831Q, which showed markedly decreased GDNF-dependent MAPK activity. Two patients with RET-G691S polymorphism harbored additional rare non-synonymous variants GDNF-R93W and RET-R982C. The patient with double RET-G691S/R982C genotype had multiple defects including renal dysplasia, megaureters and cryptorchidism. Presence of both mutations was necessary to affect RET activity. Targeted whole-exome and next-generation sequencing revealed a novel deleterious mutation G443D in GFRα1, the co-receptor for RET, in this patient. Pedigree analysis indicated that the GFRα1 mutation was inherited from the unaffected mother and the RET mutations from the unaffected father. Our studies indicate that 5 % of living CAKUT patients harbor deleterious rare variants or novel mutations in GDNF-GFRα1-RET pathway. We provide evidence for the coexistence of deleterious rare and common variants in genes in the same pathway as a cause of CAKUT and discovered novel phenotypes associated with the RET pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

    Article  PubMed  CAS  Google Scholar 

  • Akbulut S, Reddi AL, Aggarwal P, Ambardekar C, Canciani B, Kim MKH, Hix L, Vilimas T, Mason J, Basson MA, Lovatt M, Powell J, Collins S, Quatela S, Phillips M, Licht JD (2010) Sprouty proteins inhibit receptor-mediated activation of phosphatidylinositol-specific phospholipase C. Mol Biol Cell 21:3487–3496

    Article  PubMed  CAS  Google Scholar 

  • Amiel J, Salomon R, Attie T, Pelet A, Trang H, Mokhtari M, Gaultier C, Munnich A, Lyonnet S (1998) Mutations of the RET-GDNF signaling pathway in Ondine’s curse. Am J Hum Genet 62:715–717

    Article  PubMed  CAS  Google Scholar 

  • Baloh RH, Enomoto H, Johnson EM Jr, Milbrandt J (2000) The GDNF family ligands and receptors—implications for neural development. Curr Opin Neurobiol 10:103–110

    Article  PubMed  CAS  Google Scholar 

  • Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, Gross I, Martin GR, Lufkin T, McMahon AP, Wilson PD, Costantini FD, Mason IJ, Licht JD (2005) Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8:229–239

    Article  PubMed  CAS  Google Scholar 

  • Batourina E, Choi C, Paragas N, Bello N, Hensle T, Costantini FD, Schuchardt A, Bacallao RL, Mendelsohn CL (2002) Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nat Genet 32:109–115

    Article  PubMed  CAS  Google Scholar 

  • Borrello MG, Aiello A, Peissel B, Rizzetti MG, Mondellini P, Degl’Innocenti D, Catalano V, Gobbo M, Collini P, Bongarzone I, Pierotti MA, Greco A, Seregni E (2011) Functional characterization of the MTC-associated germline RET-K666E mutation: evidence of oncogenic potential enhanced by the G691S polymorphism. Endocr Relat Cancer 18:519–527

    Article  PubMed  CAS  Google Scholar 

  • Darlow JM, Molloy NHN, Green AJ, Puri P, Barton DE (2009) The increased incidence of the RET p.Gly691Ser variant in French-Canadian vesicoureteric reflux patients is not replicated by a larger study in Ireland. Hum Mutat 30:E612–E617

    Article  PubMed  Google Scholar 

  • Dressler GR (2006) The cellular basis of kidney development. Annu Rev Cell Dev Biol 22:509–529

    Article  PubMed  CAS  Google Scholar 

  • Encinas M, Rozen EJ, Dolcet X, Jain S, Comella JX, Milbrandt J, Johnson EM (2008) Analysis of Ret knockin mice reveals a critical role for IKKs, but not PI 3-K, in neurotrophic factor-induced survival of sympathetic neurons. Cell Death Differ 15:1510–1521

    Article  PubMed  CAS  Google Scholar 

  • Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EM Jr, Milbrandt J (1998) GFR α1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21:317–324

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Krux F, Binder V, Gombert M, Niehues T, Feyen O, Laws H-J, Borkhardt A, on behalf of PIDNETGNoPID (2012) Array based sequence capture and next generation sequencing for identification of primary immunodeficiencies. Scand J Immunol 75:350–354

    Article  PubMed  CAS  Google Scholar 

  • Gustin JA, Yang M, Johnson EM, Milbrandt J (2007) Deciphering adaptor specificity in GFL-dependent RET-mediated proliferation and neurite outgrowth. J Neurochem 102:1184–1194

    Article  PubMed  CAS  Google Scholar 

  • Heanue TA, Pachnis V (2007) Enteric nervous system development and Hirschsprung’s disease: advances in genetic and stem cell studies. Nat Rev Neurosci 8:466–479

    Article  PubMed  CAS  Google Scholar 

  • Jain S (2009) The many faces of RET dysfunction in kidney. Organogenesis 5:1–14

    Article  Google Scholar 

  • Jain S, Naughton CK, Yang M, Strickland A, Vij K, Encinas M, Golden J, Gupta A, Heuckeroth R, Johnson EM Jr, Milbrandt J (2004a) Mice expressing a dominant-negative Ret mutation phenocopy human Hirschsprung disease and delineate a direct role of Ret in spermatogenesis. Development 131:5503–5513

    Article  PubMed  CAS  Google Scholar 

  • Jain S, Watson MA, DeBenedetti MK, Hiraki Y, Moley JF, Milbrandt J (2004b) Expression profiles provide insights into early malignant potential and skeletal abnormalities in multiple endocrine neoplasia type 2B syndrome tumors. Cancer Res 64:3907–3913

    Article  PubMed  CAS  Google Scholar 

  • Jain S, Encinas M, Johnson EM Jr, Milbrandt J (2006) Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev 20:321–333

    Article  PubMed  CAS  Google Scholar 

  • Jain S, Knoten A, Hoshi M, Wang H, Vohra BP, Heuckeroth RO, Milbrandt J (2010) Organotypic specificity of RET-docking tyrosine residues in pathogenesis of neurocristopathies and renal malformations. JCI 120:778–790

    Article  PubMed  CAS  Google Scholar 

  • Jeanpierre C, Mace G, Parisot M, Moriniere V, Pawtowsky A, Benabou M, Martinovic J, Amiel J, Attie-Bitach T, Delezoide AL, Loget P, Blanchet P, Gaillard D, Gonzales M, Carpentier W, Nitschke P, Tores F, Heidet L, Antignac C, Salomon R (2011) RET and GDNF mutations are rare in fetuses with renal agenesis or other severe kidney development defects. J Med Genet 48:497–504

    Article  PubMed  CAS  Google Scholar 

  • Li B, Leal SM (2009) Discovery of rare variants via sequencing: implications for the design of complex trait association studies. PLoS Genet 5:e1000481

    Article  PubMed  Google Scholar 

  • Liu L, Okada S, Kong XF, Kreins AY, Cypowyj S, Abhyankar A, Toubiana J, Itan Y, Audry M, Nitschke P, Masson C, Toth B, Flatot J, Migaud M, Chrabieh M, Kochetkov T, Bolze A, Borghesi A, Toulon A, Hiller J, Eyerich S, Eyerich K, Gulácsy V, Chernyshova L, Chernyshov V, Bondarenko A, Grimaldo RM, Blancas-Galicia L, Beas IM, Roesler J, Magdorf K, Engelhard D, Thumerelle C, Burgel PR, Hoernes M, Drexel B, Seger R, Kusuma T, Jansson AF, Sawalle-Belohradsky J, Belohradsky B, Jouanguy E, Bustamante J, Bué M, Karin N, Wildbaum G, Bodemer C, Lortholary O, Fischer A, Blanche S, Al-Muhsen S, Reichenbach J, Kobayashi M, Rosales FE, Lozano CT, Kilic SS, Oleastro M, Etzioni A, Traidl-Hoffmann C, Renner ED, Abel L, Picard C, Maródi L, Boisson-Dupuis S, Puel A, Casanova JL (2011) Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med 208:1635–1648

    Article  PubMed  CAS  Google Scholar 

  • Michos O, Cebrian C, Hyink D, Grieshammer U, Williams L, D’Agati V, Licht JD, Martin GR, Costantini F (2010) Kidney development in the absence of Gdnf and Spry1 requires Fgf10. PLoS Genet 6:e1000809

    Article  PubMed  Google Scholar 

  • Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, Reichart LF, Ryan AM, Carver-Moore K, Rosenthal A (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79

    Article  PubMed  CAS  Google Scholar 

  • Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eichler EE, Bamshad M, Nickerson DA, Shendure J (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272–276

    Article  PubMed  CAS  Google Scholar 

  • Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA, Shendure J, Bamshad MJ (2010) Exome sequencing identifies the cause of a Mendelian disorder. Nat Genet 42:30–35

    Article  PubMed  CAS  Google Scholar 

  • Pichel JG, Shen L, Hui SZ, Granholm A-C, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73–76

    Article  PubMed  CAS  Google Scholar 

  • Pope JCt, Brock JW 3rd, Adams MC, Stephens FD, Ichikawa I (1999) How they begin and how they end: classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT. J Am Soc Nephrol 10:2018–2028

    PubMed  Google Scholar 

  • Rozen EJ, Schmidt H, Dolcet X, Basson MA, Jain S, Encinas M (2009) Loss of Sprouty1 rescues renal agenesis caused by Ret mutation. J Am Soc Nephrol 20:255–259

    Article  PubMed  CAS  Google Scholar 

  • Salomon R, Attie T, Pelet A, Bidaud C, Eng C, Amiel J, Sarnacki S, Goulet O, Ricour C, Nihoul-Fekete C, Munnich A, Lyonnet S (1996) Germline mutations of the RET ligand GDNF are not sufficient to cause Hirschsprung disease. Nat Genet 14:345–347

    Article  PubMed  CAS  Google Scholar 

  • Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73

    Article  PubMed  CAS  Google Scholar 

  • Sasieni PD (1997) From genotypes to genes: doubling the sample size. Biometrics 53:1253–1261

    Article  PubMed  CAS  Google Scholar 

  • Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367:380–383

    Article  PubMed  CAS  Google Scholar 

  • Skinner MA, Kalyanaraman S, Safford SD, Heuckeroth RO, Tourtellotte W, Goyeau D, Goodfellow P, Milbrandt JD, Freemerman A (2005) A human yeast artificial chromosome containing the multiple endocrine neoplasia type 2B Ret mutation does not induce medullary thyroid carcinoma but does support the growth of kidneys and partially rescues enteric nervous system development in Ret-deficient mice. Am J Pathol 166:265–274

    Article  PubMed  CAS  Google Scholar 

  • Skinner MA, Safford SD, Reeves JG, Jackson ME, Freemerman AJ (2008) Renal aplasia in humans is associated with RET mutations. Am J Hum Genet 82:344–351

    Article  PubMed  CAS  Google Scholar 

  • Song R, Yosypiv I (2011) Genetics of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 26:353–364

    Article  PubMed  Google Scholar 

  • Tsui-Pierchala BA, Ahrens RC, Crowder RJ, Milbrandt J, Johnson EM Jr (2002) The long and short isoforms of Ret function as independent signaling complexes. J Biol Chem 277:34618–34625

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Houle AM, Letendre J, Richter A (2008) RET Gly691Ser mutation is associated with primary vesicoureteral reflux in the French-Canadian population from Quebec. Hum Mutat 29:695–702

    Article  PubMed  CAS  Google Scholar 

  • Yu OH, Murawski IJ, Myburgh DB, Gupta IR (2004) Overexpression of RET leads to vesicoureteric reflux in mice. Am J Physiol Renal Physiol 287:F1123–F1130

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Quinlan J, Grote D, Lemire M, Hudson T, Benjamin A, Roy A, Pascuet E, Goodyer M, Raju C, Houghton F, Bouchard M, Goodyer P (2009) Common variants of the glial cell-derived neurotrophic factor gene do not influence kidney size of the healthy newborn. Pediatr Nephrol 24:1151–1157

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all the patients and families for participating in this study. We thank Amanda Knoten and Angela Lluka for excellent technical assistance. We are grateful to Dr. Feng Chen for several discussions and Paul Cliften for assistance with bioinformatics. We thank Dr. Jonathan Licht for the generous use of Spry1-null mice. This work was supported by National Institutes of Health (NIH) George M. O’Brien Center for Kidney Disease Research (P30-DK079333) and CTSA-ICTS tissue procurement and molecular phenotyping and center for biomedical informatics cores (NCRR UL1 RR024992) to Washington University, Children Discovery Institute grants MDII2009177 (S.J.) and LI2009-01 (T.D., R.M.), and NIH grants DK081644 and DK082531 (S.J.). Some of the results were presented as a short talk at the ASN Renal Week 2010.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Jain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

439_2012_1181_MOESM1_ESM.ppt

Supplementary Figure 1 Malformations in patients with GDNF/RET mutations are also seen in mutant mice with aberrant signaling of the RET pathway. (A-E) Representative images from Gdnf, Ret, or Spry1 mutant mice showing similar phenotypes as observed in patients with GDNF or RET mutations. A, duplicated collecting system in a Ret hypomorph Ret9/Y1015F mutant mice (the bright signal highlight E-cadherin positive urinary tract). B, unilateral agenesis in a Gdnf haploinsufficient mouse showing only one kidney (blue staining represents LacZ signal from a reporter knocked-in Gdnf locus). C, hematoxylin-eosin stained section shows cystic dysplasia highlighted by disorganized architecture and cysts (*asterisks) in a new born Ret-signaling mutant mice. D, Vesicoureteral reflux (blue dye refluxing in the ureters) in Spry1 mutant mice. Urinary tract from wild-type (WT) mice with no reflux is shown for comparison (E) Supplementary material 1 (PPT 2218 kb)

Supplemental Table S1 (XLS 38 kb)

Supplemental Table S2 (XLS 27 kb)

Supplemental Table S3 (XLS 19 kb)

Supplemental Table S4 (XLS 31 kb)

Supplementary material 6 (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, R., Ramos, E., Hoffman, M. et al. Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations. Hum Genet 131, 1725–1738 (2012). https://doi.org/10.1007/s00439-012-1181-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-012-1181-3

Keywords

Navigation