, Volume 116, Issue 3, pp 228-230
Date: 23 Nov 2004

Exclusion of the C/D box snoRNA gene cluster HBII-52 from a major role in Prader–Willi syndrome

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Prader–Willi syndrome (PWS) and Angelman syndrome (AS) are distinct neurogenetic disorders caused by the loss of function of imprinted genes in 15q11–q13. The maternally expressed UBE3A gene is affected in AS. Four protein-encoding genes (MKRN3, MAGEL2, NDN and SNURF-SNRPN) and several small nucleolar (sno) RNA genes (HBII-13, HBII-436, HBII-85, HBII-438AHBII-438B and HBII-52) are expressed from the paternal chromosome only but their contribution to PWS is unclear. To examine the role of the HBII-52 snoRNA genes, we have reinvestigated an AS family with a submicroscopic deletion spanning UBE3A and flanking sequences. By fine mapping of the centromeric deletion breakpoint in this family, we have found that the deletion affects all of the 47 HBII-52 genes. Since the complete loss of the HBII-52 genes in family members who carry the deletion on their paternal chromosome is not associated with an obvious clinical phenotype, we conclude that HBII-52 snoRNA genes do not play a major role in PWS. However, we cannot exclude the possibility that the loss of HBII-52 has a phenotypic effect when accompanied by the loss of function of other genes in 15q11–q13.

Electronic Database Information: accession numbers and URLs for data presented herein are as follows: for PAR-4 (accession number AF019617), deletion junction fragment (L15422): GenBank, http://www.ncbi.nlm.nih.gov/Genbank/; for Angelman syndrome [MIM105830]: Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.nlm.nih.gov/Omim/