Skip to main content
Log in

Rapid turnover of antimicrobial-type cysteine-rich protein genes in closely related Oryza genomes

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Defensive and reproductive protein genes undergo rapid evolution. Small, cysteine-rich secreted peptides (CRPs) act as antimicrobial agents and function in plant intercellular signaling and are over-represented among reproductively expressed proteins. Because of their roles in defense, reproduction and development and their presence in multigene families, CRP variation can have major consequences for plant phenotypic and functional diversification. We surveyed the CRP genes of six closely related Oryza genomes comprising Oryza sativa ssp. japonica and ssp. indica, Oryza glaberrima and three accessions of Oryza rufipogon to observe patterns of evolution in these gene families and the effects of variation on their gene expression. These Oryza genomes, like other plant genomes, have accumulated large reservoirs of CRP sequences, comprising 26 groups totaling between 676 and 843 genes, in contrast to antimicrobial CRPs in animal genomes. Despite the close evolutionary relationships between the genomes, we observed rapid changes in number and structure among CRP gene families. Many CRP sequences are in gene clusters generated by local duplications, have undergone rapid turnover and are more likely to be silent or specifically expressed. By contrast, conserved CRP genes are more likely to be highly and broadly expressed. Variable CRP genes created by repeated duplication, gene modification and inactivation can gain new functions and expression patterns in newly evolved gene copies. For the CRP proteins, the process of gain/loss by deletion or duplication at gene clusters seems to be an important mechanism in evolution of the gene families, which also contributes to their expression evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amien S, Kliwer I, Márton ML, Debener T, Geiger D, Becker D, Dresselhaus T (2010) Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1. PLoS Biol 8:e1000388

    Article  PubMed Central  PubMed  Google Scholar 

  • Ammiraju JSS, Luo M, Goicoechea JL, Wang W, Kudrna D, Mueller C, Talag J, Kim H, Sisneros NB, Blackmon B, Fang E, Tomkins JB, Brar D, MacKill D, McCouch S, Kurata N, Lambert G, Galbraith DW, Arumuganathan K, Rao K, Walling JG, Gill N, Yu Y, SanMiguel P, Soderlund C, Jackson S, Wing RA (2006) The Oryza bacterial artificial chromosome library resource: construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. Genome Res 16:140–147

    Article  PubMed Central  PubMed  Google Scholar 

  • Ammiraju JS, Lu F, Sanyal A, Yu Y, Song X, Jiang N, Pontaroli AC, Rambo T, Currie J, Collura K, Talag J, Fan C, Goicoechea JL, Zuccolo A, Chen J, Bennetzen JL, Chen M, Jackson S, Wing RA (2008) Dynamic evolution of Oryza genomes is revealed by comparative genomic analysis of a genus-wide vertical data set. Plant Cell 20:3191–3209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bedinger PA, Pearce G, Covey PA (2010) RALFs: peptide regulators of plant growth. Plant Signal Behav 5:1342–1346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boland M (2013) Kiwifruit proteins and enzymes: actinidin and other significant proteins. Adv Food Nutr Res 68:59–80

    Article  PubMed  Google Scholar 

  • Boutrot F, Chantret N, Gautier M-F (2008) Genome-wide analysis of the rice and arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genom 9:86

    Article  Google Scholar 

  • Chae K, Zhang K, Zhang L, Morikis D, Kim ST, Mollet J-C, de la Rosa N, Tan K, Lord EM (2007) Two SCA (stigma/style cysteine-rich Adhesin) isoforms show structural differences that correlate with their levels of in vitro pollen tube adhesion activity. J Biol Chem 282:33845–33858

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326

    Article  CAS  PubMed  Google Scholar 

  • Costa LM, Marshall E, Tesfaye M, Silverstein KAT, Mori M, Umetsu Y, Otterback SL, Papareddy R, Dickinson HG, Boutiller K, VandenBosch KA, Ohki S, Gutierrez-Marcos JS (2014) Central cell-derived peptides regulate early embryo patterning in flowering plants. Science 344:168–172

    Article  CAS  PubMed  Google Scholar 

  • Davidson RM, Gowda M, Moghe G, Lin H, Vaillancourt B, Shiu S-H, Jiang N, Buell RC (2012) Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution. Plant J. 71:492–502

    CAS  PubMed  Google Scholar 

  • de Carvalho A, Gomes VM (2011) Plant defensins and defensin-like peptides—biological activities and biotechnological applications. Curr Pharm Des 17:4270–4293

    Article  CAS  Google Scholar 

  • De Graaf BHJ, Knuiman BA, Derksen J, Mariani C (2003) Characterization and localization of the transmitting tissue-specific PELPIII proteins of Nicotiana tabacum. J Exp Bot 54:55–63

    Article  PubMed  Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu J-R, Pan H, Read NR, Lee Y-H, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomlets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun M-H, Bohnert H, Coughlan S, Butler J, Calvo S, Ma L-J, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986

    Article  CAS  PubMed  Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  CAS  PubMed  Google Scholar 

  • Eddy SR (2011) Accelerated profile HMMsearches. PLoS Comput Biol 7:e1002195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edstam MM, Viitanen L, Salminen TA, Edqvist J (2011) Evolutionary history of the non-specific lipid transfer proteins. Mol Plant 4:947–964

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Mistry J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A (2009) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    Article  PubMed Central  PubMed  Google Scholar 

  • Gan X, Stegle O, Behr J, Steffen JG, Drewe P, Hildebrand KL, Lyngsoe R, Schultheiss SJ, Osborne EJ, Sreedharan VT, Kahles A, Bohnert R, Jean G, Derwent P, Kersey P, Belfield EJ, Harberd NP, Kemen E, Toomajian C, Kover PX, Clark RM, Rätsch G, Mott R (2011) Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature 477:419–423

    Article  CAS  PubMed  Google Scholar 

  • Gibbs GM, Roelants K, O’Bryan MK (2008) The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins—roles in reproduction, cancer, and immune defense. Endocr Rev 29:865–897

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez-Marcos JF, Costa LM, Biderre-Petit C, Khbaya B, O’Sullivan DM, Wormald M, Perez P, Dickinson HG (2004) Maternally expressed gene1 is a novel maize endosperm transfer cell-specific gene with a maternal parent-of-origin pattern of expression. Plant Cell 16:1288–1301

    Article  PubMed Central  PubMed  Google Scholar 

  • Hara K, Yokoo T, Kajita R, Onishi T, Yahata S, Peterson KM, Torii KU, Kakimoto T (2009) Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant Cell Physiol 50:1019–1031

    Article  CAS  PubMed  Google Scholar 

  • Jacquemin J, Ammiraju JSS, Haberer G, Billheimer DD, Yu Y, Liu LC, Rivera LF, Mayer K, Chen M, Wing RA (2013) 15 MYA of evolution in the Oryza genus shows extensive gene family expansion. Mol Plant 7:642–656

    Article  PubMed  Google Scholar 

  • José-Estanyol M, Gomis-Rüth FX, Puigdomènech P (2004) The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiol Biochem 42:355–365

    Article  PubMed  Google Scholar 

  • Kasprzewska A (2003) Plant chitinases—regulation and function. Cell Mol Biol Lett 8:809–824

    CAS  PubMed  Google Scholar 

  • Kawahara Y, Oono Y, Kanamori H, Matsumoto T, Itoh T, Minami E (2012) Simultaneous RNA-seq analysis of a mixed transcriptome of rice and blast fungus interaction. PLoS ONE 7:e49423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  PubMed Central  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed Central  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Light S, Sagit R, Sachenkova O, Ekman D, Elofsson A (2013) Protein expansion is primarily due to indels in intrinsically disordered regions. Mol Biol Evol 30:2645–2653

    Article  CAS  PubMed  Google Scholar 

  • Marshall E, Costa LM, Gutierrez-Marcos J (2011) Cysteine-rich peptides (CRPs) mediate diverse aspects of cell-cell communication in plant reproduction and development. J Exp Bot 62:1677–1686

    Article  CAS  PubMed  Google Scholar 

  • Matsuyama T, Yasumura N, Funakoshi M, Yamada Y, Hashimoto T (1999) Maize genes specifically expressed in the outermost cells of root cap. Plant Cell Physiol 40:469–476

    Article  CAS  PubMed  Google Scholar 

  • Mergaert P, Nikovics K, Kelemen Z, Maunoury N, Vaubert D, Kondorosi A, Kondorosi E (2003) A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiol 132:161–173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mizuno H, Kawahara Y, Sakai H, Kanamori H, Wakimoto H, Yamagata H, Oono Y, Wu J, Ikawa H, Itoh T, Matsumoto T (2010) Massive parallel sequencing of mRNA in identification of unannotated salinity stress-inducible transcripts in rice (Oryza sativa L.). BMC Genom 11:683

    Article  CAS  Google Scholar 

  • Naito K, Zhang F, Tsukiyama T, Saito H, Hancock N, Richardson AO, Okumoto Y, Tanisaka T, Wessler SR (2009) Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461:1130–1134

    Article  CAS  PubMed  Google Scholar 

  • Nallu S, Silverstein KAT, Samac DA, Bucciarelli B, Vance CP, Vanden Bosch KA (2013) Regulatory patterns of a large family of defensin-like genes expressed in nodules of Medicago truncatula. PLoS ONE 8:e60355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H, Yui R, Kasahara RD, Hamamura Y, Mizukami A, Susaki D, Kawano N, Sakakibara T, Namiki S, Itoh K, Otsuka K, Matsuzaki M, Nozaki H, Kuroiwa T, Nakano A, Kanaoka MM, Dresselhaus T, Sasaki N, Higashiyama T (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–361

    Article  CAS  PubMed  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Teeter M, Weckert E, Lamzin VS (2011) Crystal structure of small protein crambin at 0.48 Å resolution. Acta Crystallograph Sect F Struct Biol Cryst Commun 67: 424

  • Schopfer CR, Nasrallah ME, Nasrallah JB (1999) The male determinant of self-incompatibility in Brassica. Science 286:1697–1700

    Article  CAS  PubMed  Google Scholar 

  • Silverstein KAT, Moskal WA Jr, Wu HC, Underwood BA, Graham MA, Town CD, Vanden Bosch KA (2007) Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant J 51:262–280

    Article  CAS  PubMed  Google Scholar 

  • Stec B (2006) Plant thionins—the structural perspective. CMLS Cell Mol Life S 63:1370–1385

    Article  CAS  Google Scholar 

  • Svensson B, Svendsen I, Højrup P, Roepstorff P, Ludvigsen S, Poulsen FM (1992) Primary structure of barwin: a barley seed protein closely related to the C-terminal domain of proteins encoded by wound-induced plant genes. Biochem Mosc 31:8767–8770

    Article  CAS  Google Scholar 

  • Takeuchi H, Higashiyama T (2012) A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLoS Biol 10:e1001449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang L, Zou X, Achoundong G, Potgieter C, Second G, Zhang D, Ge S (2010) Phylogeny and biogeography of the rice tribe (Oryzeae): evidence from combined analysis of 20 chloroplast fragments. Mol Phylogenet Evol 54:266–277

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsukamoto T, Qin Y, Huang Y, Dunatunga D, Palanivelu R (2010) A role for LORELEI, a putative glycosylphosphatidylinositol-anchored protein, in Arabidopsis thaliana double fertilization and early seed development. Plant J 62:571–588

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Yu Y, Haberer G, Marri PR, Fan C, Goicoechea JL, Zuccolo A, Song X, Kudrna D, Ammiraju JSS, Cossu RM, Maldonado C, Chen J, Lee S, Sisneros N, de Baynast K, Golser W, Wissotski M, Kim W, Sanchez P, Ndjiondjop M-N, Sanni K, Long M, Carney J, Panaud O, Wicker T, Machado CA, Chen M, Mayer KFX, Rounsley S, Wing RA (2014) The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat Genet 46:982–988

    Article  CAS  PubMed  Google Scholar 

  • Wheeler MJ, de Graaf BHJ, Hadjiosif N, Perry RM, Poulter NS, Osman K, Vatovec S, Harper A, Franklin FCH, Franklin-Tong VE (2009) Identification of the pollen self-incompatibility determinant in Papaver rhoeas. Nature 459:992–995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu H, Swoboda I, Bhalla PL, Singh MB (1999) Male gametic cell-specific gene expression in flowering plants. Proc Natl Acad Sci 96:2554–2558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann R, Sakai H, Hochholdinger F (2010) The gibberellic acid stimulated-like gene family in maize and its role in lateral root development. Plant Physiol 152:356–365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported partly from a grant by the Transdisciplinary Research Integration Center (TRIC) of the Research Organization of Information and Systems, and partly from the National BioResource Project, Japan (NBRP). We would like to thank Drs. Masahiro Fujita (NIG) and Qiang Zhao (CAS) for their help to register genome sequences. This work was funded by a grant from the Transdisciplinary Research Integration Center (TRIC) of the Research Organization of Information and Systems for the project “Genetic Function Systems”, and by the National BioResource Project Japan (NBRP) for the project “Rice Bioresources”.

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nori Kurata.

Additional information

Communicated by B. Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shenton, M.R., Ohyanagi, H., Wang, ZX. et al. Rapid turnover of antimicrobial-type cysteine-rich protein genes in closely related Oryza genomes. Mol Genet Genomics 290, 1753–1770 (2015). https://doi.org/10.1007/s00438-015-1028-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1028-4

Keywords

Navigation