Skip to main content
Log in

Prediction of retrotransposons and assessment of genetic variability based on developed retrotransposon-based insertion polymorphism (RBIP) markers in Pyrus L

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Interspecific hybridization has been considered the major mode of evolution in Pyrus (pear), and thus, the genetic relationships within this genus have not been well documented. Retrotransposons are ubiquitous components of plant genomes and 42.4 % of the pear genome was reported to be long terminal repeat (LTR) retrotransposons, implying that retrotransposons might be significant in the evolution of Pyrus. In this study, 1,836 putative full-length LTR retrotransposons were isolated and 196 retrotransposon-based insertion polymorphism (RBIP) primers were developed, of which 24 pairs to the Ppcr1 subfamily of copia retrotransposons were used to analyze genetic diversity among 110 Pyrus accessions from Eurasia. Our results showed that Ppcr1 replicated many times in the development of cultivated Asian pears. The genetic structure analysis and the unweighted pair group method with arithmetic mean (UPGMA) dendrogram indicated that all accessions could be divided into Oriental and Occidental groups. In Oriental pears, wild pea pears clustered separately into independent groups in accordance with their morphological classifications. Cultivars of P. ussuriensis Maxim, P. pyrifolia Nakai, and P. pyrifolia Chinese white pear were mingled together, which inferred that hybridization events occurred during the development of the cultivated Asian pears. In Occidental pears, two clades were obtained in the UPGMA dendrogram in accordance with their geographical distribution; one contained the European species and the other included species from North Africa and West Asia. New findings in this study will be important to further understand the phylogeny of Pyrus and origins of cultivated pears.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aldasoro JJ, Aedo C, Garmendia FM (1996) The genus Pyrus L. (Rosaceae) in south-west Europe and North Africa. Bot J Linn Soc 121(2):143–158

    Google Scholar 

  • Bailey LH (1917) Pyrus. Standard cyclopedia of horticulture, vol V. Macmillan, New York, pp 2865–2878

    Google Scholar 

  • Bao L, Chen K, Zhang D, Cao Y, Yamamoto T, Teng Y (2007) Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers. Genet Resour Crop Evol 54(5):959–971

    Article  CAS  Google Scholar 

  • Bao L, Chen K, Zhang D, Li X, Teng Y (2008) An assessment of genetic variability and relationships within Asian pears based on AFLP (amplified fragment length polymorphism) markers. Sci Hortic 116(4):374–380

    Article  CAS  Google Scholar 

  • Bassil N, Postman JD (2010) Identification of European and Asian pears using EST-SSRs from Pyrus. Genet Resour Crop Evol 57(3):357–370

    Article  Google Scholar 

  • Baucom RS, Estill JC, Leebens-Mack J, Bennetzen JL (2009) Natural selection on gene function drives the evolution of LTR retrotransposon families in the rice genome. Genome Res 19(2):243–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bergman CM, Quesneville H (2007) Discovering and detecting transposable elements in genome sequences. Brief Bioinform 8(6):382–392

    Article  CAS  PubMed  Google Scholar 

  • Cavallini A, Natali L, Zuccolo A, Giordani T, Jurman I, Ferrillo V, Vitacolonna N, Sarri V, Cattonaro F, Ceccarelli M, Cionini PG, Morgante M (2010) Analysis of transposons and repeat composition of the sunflower (Helianthus annuus L.) genome. Theor Appl Genet 120(3):491–508

    Article  CAS  PubMed  Google Scholar 

  • Challice JS, Westwood MN (1973) Numerical taxonomic studies of the genus Pyrus using both chemical and botanical characters. Bot J Linn Soc 67(2):121–148

    Article  Google Scholar 

  • Cossu RM, Buti M, Giordani T, Natali L, Cavallini A (2012) A computational study of the dynamics of LTR retrotransposons in the Populus trichocarpa genome. Tree Genet Genomes 8(1):61–75

    Article  Google Scholar 

  • Diwan N, Cregan PB (1997) Automated sizing of fluorescent-labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. Theor Appl Genet 95(5–6):723–733

    Article  CAS  Google Scholar 

  • Dondoshansky I, Wolf Y (2002) Blastclust (NCBI Software Development Toolkit). NCBI, Bethesda

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Article  Google Scholar 

  • Ellinghaus D, Kurtz S, Willhoeft U (2008) LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinform 9(1):18

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fan L, Zhang M, Liu Q, Li L, Song Y, Wang L, Zhang S, Wu J (2013) Transferability of newly developed pear SSR markers to other Rosaceae Species. Plant Mol Biol Rep 31(6):1271–1282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20(14):3639–3644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Havecker ER, Gao X, Voytas DF (2004) The diversity of LTR retrotransposons. Genome Biol 5(6):225

    Article  PubMed Central  PubMed  Google Scholar 

  • Iketani H, Katayama H, Uematsu C, Mase N, Sato Y, Yamamoto T (2012) Genetic structure of East Asian cultivated pears (Pyrus spp.) and their reclassification in accordance with the nomenclature of cultivated plants. Plant Syst Evol 298(9):1689–1700

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(4):1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jing R, Knox MR, Lee JM, Vershinin AV, Ambrose M, Ellis TN, Flavell AJ (2005) Insertional polymorphism and antiquity of PDR1 retrotransposon insertions in Pisum species. Genetics 171(2):741–752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalendar R, Schulman AH (2006) IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Protoc 1(5):2478–2484

    Article  CAS  PubMed  Google Scholar 

  • Kalendar R, Flavell AJ, Ellis TH, Sjakste T, Moisy C, Schulman AH (2011) Analysis of plant diversity with retrotransposon-based molecular markers. Heredity (Edinb) 106(4):520–530

    Article  CAS  Google Scholar 

  • Kim H, Yamamoto M, Hosaka F, Terakami S, Nishitani C, Sawamura Y, Yamane H, Wu JZ, Matsumoto T, Matsuyama T, Yamamoto T (2011) Molecular characterization of novel Ty1-copia-like retrotransposons in pear (Pyrus pyrifolia). Tree Genet Genomes 7(4):845–856

    Article  Google Scholar 

  • Kim H, Terakami S, Nishitani C, Kurita K, Kanamori H, Katayose Y, Sawamura Y, Saito T, Yamamoto T (2012) Development of cultivar-specific DNA markers based on retrotransposon-based insertional polymorphism in Japanese pear. Breed Sci 62(1):53–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kohany O, Gentles AJ, Hankus L, Jurka J (2006) Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinform 7:474

    Article  Google Scholar 

  • Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23(10):1289–1291

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  CAS  PubMed  Google Scholar 

  • McNeill J (2012) International Code of Nomenclature for algae, fungi and plants (Melbourne Code). Koeltz Scientific Books, Germany

    Google Scholar 

  • Monte-Corvo L, Cabrita L, Oliveira C, Leitao J (2000) Assessment of genetic relationships among Pyrus species and cultivars using AFLP and RAPD markers. Genet Resour Crop Evol 47(3):257–265

    Article  Google Scholar 

  • Nei M, Li W (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76(10):5269–5273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oliveira CM, Mota M, Monte-Corvo L, Goulao L, Silva DM (1999) Molecular typing of Pyrus based on RAPD markers. Sci Hortic 79(3):163–174

  • Peterson DG, Schulze SR, Sciara EB, Lee SA, Bowers JE, Nagel A, Jiang N, Tibbitts DC, Wessler SR, Paterson AH (2002) Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res 12(5):795–807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Potter D, Eriksson T, Evans RC, Oh S, Smedmark JEE, Morgan DR, Kerr M, Robertson KR, Arsenault M, Dickinson TA, Campbell CS (2007) Phylogeny and classification of Rosaceae. Plant Syst Evol 266(1–2):5–43

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rohlf FJ (1998) Numerical taxonomy and multivariate analysis system version 2.0. Exeter Publishing, Setauket

    Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4(1):137–138

    Article  Google Scholar 

  • Sabot F, Schulman AH (2006) Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity (Edinb) 97(6):381–388

    Article  CAS  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK et al (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274(5288):765–768

    Article  CAS  PubMed  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20(1):43–45

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Smit AFA, Hubley R, Green P (1996–2004). RepeatMasker: Open-3.0. Published on the web. http://www.repeatmasker.org. Accessed 31 January 2014

  • Teng Y, Tanabe K (2004) Reconsideration on the origin of cultivated pears native to East Asia. Fourth Int Symp Taxon Cultiv Plants 634:175–182

    Google Scholar 

  • Teng Y, Tanabe K, Tamura F, Itai A (2001) Genetic relationships of pear cultivars in Xinjiang, China, as measured by RAPD markers. J Hortic Sci Biotechnol 76(6):771–779

    CAS  Google Scholar 

  • Teng Y, Tanabe K, Tamura F, Itai A (2002) Genetic relationships of Pyrus species and cultivars native to East Asia revealed by randomly amplified polymorphic DNA markers. J Am Soc Hortic Sci 127(2):262–270

    CAS  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 42(10):833–839

    Article  CAS  PubMed  Google Scholar 

  • Vicient CM, Kalendar R, Anamthawat-Jonsson K, Schulman AH (1999) Structure, functionality, and evolution of the BARE-1 retrotransposon of barley. Genetica 107(1–3):53–63

    Article  CAS  PubMed  Google Scholar 

  • Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BB, Powell W (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253(6):687–694

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982

    Article  CAS  PubMed  Google Scholar 

  • Wierdl M, Dominska M, Petes TD (1997) Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics 146(3):769–779

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu J, Wang Z, Shi Z et al (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23(2):396–408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada NA, Smith GA, Castro A, Roques CN, Boyer JC, Farber RA (2002) Relative rates of insertion and deletion mutations in dinucleotide repeats of various lengths in mismatch repair proficient mouse and mismatch repair deficient human cells. Mutat Res Fund Mol M 499(2):213–225

    Article  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Sawamura Y, Manabe T, Kotobuki K, Hayashi T, Ban Y, Matsuta N (2002) Simple sequence repeats for genetic analysis in pear. Euphytica 124(1):129–137

    Article  CAS  Google Scholar 

  • Yao L, Zheng X, Cai D, Gao Y, Wang K, Cao Y, Teng Y (2010) Exploitation of Malus EST-SSRs and the utility in evaluation of genetic diversity in Malus and Pyrus. Genet Resour Crop Evol 57(6):841–851

    Article  CAS  Google Scholar 

  • Yu T (1979) Taxonomy of the fruit tree in China. Agriculture Press, Beijing (in Chinese)

    Google Scholar 

  • Zheng X, Cai D, Yao L, Teng Y (2008) Non-concerted ITS evolution, early origin and phylogenetic utility of ITS pseudogenes in Pyrus. Mol Phylogenet Evol 48(3):892–903

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Hu C, Spooner D, Liu J, Cao J, Teng Y (2011) Molecular evolution of Adh and LEAFY and the phylogenetic utility of their introns in Pyrus (Rosaceae). BMC Evol Biol 11(1):255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng X, Cai D, Potter D, Postman J, Liu J, Teng Y (2014) Phylogeny and evolutionary histories of Pyrus L. revealed by phylogenetic trees and networks based on data from multiple DNA sequences. Mol Phylogenet Evol. doi:10.1016/j.ympev.2014.07.009

    Google Scholar 

Download references

Acknowledgments

This work was financed by a Grant from the National Natural Science Foundation of China (No. 31201592), a Specialized Research Fund for the Doctoral Program of Higher Education (20110101110091), and a Grant for Innovative Research Team of Zhejiang Province of China (2013TD05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanwen Teng.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 20 kb)

Supplementary material 2 (XLSX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Zong, Y., Yue, X. et al. Prediction of retrotransposons and assessment of genetic variability based on developed retrotransposon-based insertion polymorphism (RBIP) markers in Pyrus L. Mol Genet Genomics 290, 225–237 (2015). https://doi.org/10.1007/s00438-014-0914-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0914-5

Keywords

Navigation