Skip to main content
Log in

Endogenously imprinted genes in Drosophila melanogaster

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Genomic imprinting is an epigenetic state that results from differential processing of chromosomes during gametogenesis and which can cause differential expression of genes depending on the sex of the parent transmitting that gene. In Drosophila, many examples of imprinted marker genes have been documented and imprinting of these genes involves highly conserved epigenetic regulators. However, no endogenously imprinted genes have yet been identified. Here we present a phenotypic and transcriptional analysis of parthenogenetic (gynogenetic) and genotypically identical but sexually produced adult female Drosophila. We find that while parthenogenetic females have a superficially normal phenotype and are viable and fertile, their lifespan is extended relative to their sexually-produced counterparts. Microarray/transcriptional analysis of parthenogenetic versus sexually-produced females reveals 76 genes with consistently altered patterns of expression, 36 upregulated and 40 downregulated, some with known effects on aging. Analysis of individuals with uniparental inheritance of only portions of their genome suggest that many of these genes may be indirectly imprinted, responding to either other imprinted genes or redistribution of chromatin components that are differentially allocated to sex and autosomal heterochromatin in a sex-dependent manner during gametogenesis. As gene expression dependent on the parental origin of the genome meets the definition of genomic imprinting, our study provides evidence that endogenous genes are imprinted in Drosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alleman M, Doctor J (2000) Genomic imprinting in plants: observations and evolutionary implications. Plant Mol Biol 43:147–161

    Article  CAS  PubMed  Google Scholar 

  • Anaka M, Lynn A, McGinn P, Lloyd VK (2009) Genomic imprinting in Drosophila has properties of both mammalian and insect imprinting. Dev Genes Evol 219(2):59–66

    Article  PubMed  Google Scholar 

  • Antosh M, Fox D, Helfand SL, Cooper LN, Neretti N (2011) New comparative genomics approach reveals a conserved health span signature across species. Aging 3:576–583

    PubMed Central  PubMed  Google Scholar 

  • Bean CJ, Schaner CE, Kelly WG (2004) Meiotic pairing and imprinted X chromatin assembly in Caenorhabditis elegans. Nat Genet 36:100–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Contrino S, Smith RN, Butano D, Carr A, Hu F, Lyne R, Rutherford K, Kalderimis A, Sullivan J, Carbon S, Kephart ET, Lloyd P, Stinson EO, Washington NL, Perry MD, Ruzanov P, Zha Z, Lewis SE, Stein LD, Micklem G (2012) modMine: flexible access to modENCODE data. Nucleic Acids Res 40:D1082–D1088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coolon JD, Stevenson KR, McManus CJ, Graveley BR, Wittkopp PJ (2012) Genomic imprinting absent in Drosophila melanogaster adult females. Cell Rep 2(1):69–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davies W, Isles A, Smith R, Karunadasa D, Burrmann D, Humby T, Ojarikre O, Biggin C, Skuse D, Burgoyne P, Wilkinson L (2005) Xlr3b is a new imprinted candidate for X-linked parent-of-origin effects on cognitive function in mice. Nat Genet 37:625–629

    Article  CAS  PubMed  Google Scholar 

  • Dubruille R, Orsi GA, Delabaere L, Cortier E, Couble P, Marais GA, Loppin B (2010) Specialization of a Drosophila capping protein essential for the protection of sperm telomeres. Curr Biol 20:2090–2099

    Article  CAS  PubMed  Google Scholar 

  • Ferree PM, Sullivan W (2006) A genetic test of the role of the maternal pronucleus in Wolbachia-induced cytoplasmic incompatibility in Drosophila melanogaster. Genetics 173:839–847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fuyama Y (1984) Gynogenesis in Drosophila melanogaster. Jpn J Genet 59:91–96

    Article  Google Scholar 

  • Fuyama Y (1986) Genetics of parthenogenesis in Drosophila melanogaster. II. Characterization of a gynogenetically reproducing strain. Genetics 114:495–509

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao G, Cheng Y, Wesolowska N, Rong YS (2011) Paternal imprint essential for the inheritance of telomere identity in Drosophila. Proc Natl Acad Sci USA 108:4932–4937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gibson G, Riley-Berger R, Harshman L, Kopp A, Vacha S, Nuzhdin S, Wayne M (2004) Extensive sex-specific nonadditivity of gene expression in Drosophila melanogaster. Genetics 167:1791–1799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Golic KG, Golic MM, Pimpinelli S (1998) Imprinted control of gene activity in Drosophila. Curr Biol 8:1273–1276

    Article  CAS  PubMed  Google Scholar 

  • Haller BS, Woodruff RC (2000) Varied expression of a Y-linked P[w+] insert due to imprinting in Drosophila melanogaster. Genome 43(2):285–292

    Article  CAS  PubMed  Google Scholar 

  • Jiang PP, Hartl DL, Lemos B (2010) Y not a dead end: epistatic interactions between Y-linked regulatory polymorphisms and genetic background affect global gene expression in Drosophila melanogaster. Genetics 186:109–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joanis V, Lloyd VK (2002) Genomic imprinting in Drosophila is maintained by the products of Suppressor of variegation and trithorax group, but not Polycomb group, genes. Mol Genet Genomics 268:103–112

    Article  CAS  PubMed  Google Scholar 

  • Jullien PE, Berger F (2009) Gamete-specific epigenetic mechanisms shape genomic imprinting. Curr Opin Plant Biol 12:637–642

    Article  CAS  PubMed  Google Scholar 

  • Kalfayan L, Wensink PC (1982) Developmental regulation of Drosophila alpha-tubulin genes. Cell 29:91–98

    Article  CAS  PubMed  Google Scholar 

  • Khosla S, Mendiratta G, Brahmachari V (2006) Genomic imprinting in the mealybugs. Cytogenet Genome Res 113:41–52

    Article  CAS  PubMed  Google Scholar 

  • Komma DJ, Endow SA (1995) Haploidy and androgenesis in Drosophila. Proc Natl Acad Sci USA 92:11884–11888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lemos B, Araripe LO, Hartl DL (2008) Polymorphic Y chromosomes harbor cryptic variation with manifold functional consequences. Science 319:91–93

    Article  CAS  PubMed  Google Scholar 

  • Lemos B, Branco AT, Hartl DL (2010) Epigenetic effects of polymorphic Y chromosomes modulate chromatin components, immune response, and sexual conflict. Proc Natl Acad Sci USA 107:15826–15831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lemos B, Branco AT, Jiang PP, Hartl DL, Meiklejohn CD (2013) Genome-wide gene expression effects of sex chromosome imprinting in Drosophila. G3 (Bethesda) 4(1):1–10 (pii:g3.113.008029v1)

    Article  Google Scholar 

  • Lloyd V (2000) Parental imprinting in Drosophila. Genetica 109:35–44

    Article  CAS  PubMed  Google Scholar 

  • MacDonald WA (2012) Epigenetic mechanisms of genomic imprinting: common themes in the regulation of imprinted regions in mammals, plants, and insects. Genet Res Int. doi:10.1155/2012/585024

    PubMed Central  PubMed  Google Scholar 

  • MacDonald WA, Menon D, Bartlett NJ, Sperry GE, Rasheva V, Meller V, Lloyd VK (2010) The Drosophila homolog of the mammalian imprint regulator, CTCF, maintains the maternal genomic imprint in Drosophila melanogaster. BMC Biol 8:105

    Article  PubMed Central  PubMed  Google Scholar 

  • Maggert KA, Golic KG (2002) The Y chromosome of Drosophila melanogaster exhibits chromosome-wide imprinting. Genetics 162:1245–1258

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin CC, McGowan R (1995) Genotype-specific modifiers of transgene methylation and expression in the zebrafish, Danio rerio. Genet Res 65:21–28

    Article  CAS  PubMed  Google Scholar 

  • Matthews KA, Miller DF, Kaufman TC (1989) Developmental distribution of RNA and protein products of the Drosophila alpha-tubulin gene family. Dev Biol 132:45–61

    Article  CAS  PubMed  Google Scholar 

  • McDonald HB, Goldstein LS (1990) Identification and characterization of a gene encoding a kinesin-like protein in Drosophila. Cell 61:991–1000

    Article  CAS  PubMed  Google Scholar 

  • McDonald HB, Stewart RJ, Goldstein LS (1990) The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell 63:1159–1165

    Article  CAS  PubMed  Google Scholar 

  • McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183

    Article  CAS  PubMed  Google Scholar 

  • Menon DU, Meller VH (2009) Imprinting of the Y chromosome influences dosage compensation in roX1 roX2 Drosophila melanogaster. Genetics 183:811–820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Menon DU, Meller VH (2010) Germ line imprinting in Drosophila: epigenetics in search of function. Fly 4(1):48–52

    Article  CAS  PubMed  Google Scholar 

  • Michalak P (2009) Epigenetic, transposon and small RNA determinants of hybrid dysfunctions. Heredity 102(1):45–50

    Article  CAS  PubMed  Google Scholar 

  • Morison IM, Ramsay JP, Spencer HG (2005) A census of mammalian imprinting. Trends Genet 21:457–465

    Article  CAS  PubMed  Google Scholar 

  • Neal SJ, Gibson ML, So AK, Westwood JT (2003) Construction of a cDNA-based microarray for Drosophila melanogaster: a comparison of gene transcription profiles from SL2 and Kc167 cells. Genome 46:879–892

    Article  CAS  PubMed  Google Scholar 

  • Noujdin NI (1944) The regularities of heterochromatin influence on mosaicism. Zh Obshch Biol 5:357–388

    Google Scholar 

  • Novitski E, Grace D, Strommen C (1981) The entire compound autosomes of Drosophila melanogaster. Genetics 98:257–273

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pardo-Manuel de Villena F, de la Casa-Esperón E, Sapienza C (2000) Natural selection and the function of genomic imprinting: beyond the silenced minority. Trends Genet 16:573–579

    Article  CAS  PubMed  Google Scholar 

  • Partridge L (2011) Some highlights of research on aging with invertebrates, 2010. Aging Cell 10:5–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peters J, Beechey C (2004) Identification and characterisation of imprinted genes in the mouse. Brief Funct Genomics Proteomic 2:320–333

    Article  CAS  Google Scholar 

  • Pimpinelli S, Berloco M, Fanti L, Dimitri P, Bonaccorsi S, Marchetti E, Caizzi R, Caggese C, Gatti M (1995) Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc Natl Acad Sci USA 92:3804–3808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Plagge A, Isles AR, Gordon E, Humby T, Dean W, Gritsch S, Fischer-Colbrie R, Wilkinson LS, Kelsey G (2005) Imprinted Nesp55 influences behavioral reactivity to novel environments. Mol Cell Biol 25:3019–3026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rera M, Clark RI, Walker DW (2012) Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc Natl Acad Sci USA 109:21528–21533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodrigues JC, Luo M, Berger F, Koltunow AM (2010) Polycomb group gene function in sexual and asexual seed development in angiosperms. Sex Plant Reprod 23(2):123–133

    Article  CAS  PubMed  Google Scholar 

  • Scott RJ, Spielman M (2006) Deeper into the maize: new insights into genomic imprinting in plants. BioEssays 28:1167–1171

    Article  CAS  PubMed  Google Scholar 

  • Seong KM, Kim CS, Seo SW, Jeon HY, Lee BS, Nam SY, Yang KH, Kim JY, Kim CS, Min KJ, Jin YW (2011) Genome-wide analysis of low-dose irradiated male Drosophila melanogaster with extended longevity. Biogerontology 12:93–107

    Article  PubMed  Google Scholar 

  • Siebold AP, Banerjee R, Tie F, Kiss DL, Moskowitz J, Harte PJ (2010) Polycomb Repressive Complex 2 and Trithorax modulate Drosophila longevity and stress resistance. Proc Natl Acad Sci USA 107:169–174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spofford JB (1976) Position-effect variegation in Drosophila. In: Ashburner M, Novitski E (eds) The genetics and biology of Drosophila. Academic Press, London, pp 955–1018

    Google Scholar 

  • Sun FL, Cuaycong MH, Craig CA, Wallrath LL, Locke J, Elgin SC (2000) The fourth chromosome of Drosophila melanogaster: interspersed euchromatic and heterochromatic domains. Proc Natl Acad Sci USA 97:5340–5345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548–550

    Article  CAS  PubMed  Google Scholar 

  • Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13:2129–2141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tower J (2000) Transgenic methods for increasing Drosophila life span. Mech Ageing Dev 118:1–14

    Article  CAS  PubMed  Google Scholar 

  • Tweedie S, Ashburner M, Falls K, Leyland P, McQuilton P, Marygold S, Millburn G, Osumi-Sutherland D, Schroeder A, Seal R, Zhang H (2009) FlyBase: enhancing Drosophila gene ontology annotations. Nucleic Acids Res 37:D555–D559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wittkopp PJ, Haerum BK, Clark AG (2006) Parent-of-origin effects on mRNA expression in Drosophila melanogaster not caused by genomic imprinting. Genetics 173:1817–1821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wood AJ, Oakey RJ (2006) Genomic imprinting in mammals: emerging themes and established theories. PLoS Genet 2(11):e147

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang P, Timakov B, Stankiewicz RL, Turgut IY (2000) A trans-activator on the Drosophila Y chromosome regulates gene expression in the male germ line. Genetica 109:141–150

    Article  CAS  PubMed  Google Scholar 

  • Zou S, Meadows S, Sharp L, Jan LY, Jan YN (2000) Genome-wide study of aging and oxidative stress response in Drosophila melanogaster. Proc Natl Acad Sci USA 97:13726–13731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zuckerkandl E (1974) A possible role of ‘inert’ heterochromatin in cell differentiation. Action of and competition for ‘locking’ molecules. Biochimie 56:937–954

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Natural Sciences and Engineering Council of Canada grant to V.K.L and graduate scholarship to L.A.M. We thank Margaret Beaton and the anonymous reviewers for their comments as well as Tim Westwood and Scott Neal of the Canadian Drosophila Microarray Centre for assistance with microarray hybridization and analysis, and the Bloomington Indiana stock center for Drosophila stocks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vett K. Lloyd.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 94 kb)

Supplementary material 2 (PDF 168 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McEachern, L.A., Bartlett, N.J. & Lloyd, V.K. Endogenously imprinted genes in Drosophila melanogaster . Mol Genet Genomics 289, 653–673 (2014). https://doi.org/10.1007/s00438-014-0840-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0840-6

Keywords

Navigation