Molecular Genetics and Genomics

, Volume 281, Issue 6, pp 609–626

Genome-wide analysis of Carica papaya reveals a small NBS resistance gene family

  • Brad W. Porter
  • Maya Paidi
  • Ray Ming
  • Maqsudul Alam
  • Wayne T. Nishijima
  • Yun J. Zhu
Original Paper

DOI: 10.1007/s00438-009-0434-x

Cite this article as:
Porter, B.W., Paidi, M., Ming, R. et al. Mol Genet Genomics (2009) 281: 609. doi:10.1007/s00438-009-0434-x


The majority of plant disease resistance proteins identified to date belong to a limited number of structural classes, of which those containing nucleotide-binding site (NBS) motifs are the most common. This study provides a detailed analysis of the NBS-encoding genes of the fifth sequenced angiosperm, Carica papaya. Despite having a significantly larger genome than Arabidopsis thaliana, papaya has fewer NBS genes. Nevertheless, papaya maintains genes belonging to both Toll/interleukin-1 receptor (TIR) and non-TIR subclasses. Papaya’s NBS gene family shares most similarity with Vitis vinifera homologs, but seven non-TIR members with distinct motif sequence represent a novel subgroup. Transcript splice variants and adjacent genes encoding resistance-associated proteins may provide functional compensation for the apparent scarcity of NBS class resistance genes. Looking forward, the papaya NBS gene family is uniquely small in size but structurally diverse, making it suitable for functional studies aimed at a broader understanding of plant resistance genes.


Carica papayaResistance genesNBS-LRR genesTIR domainCC motifAlternative splicing

Supplementary material

438_2009_434_MOESM1_ESM.doc (204 kb)
Supplemental dataset 1 (DOC 204 kb)
438_2009_434_MOESM2_ESM.doc (38 kb)
Supplemental Fig. 1 (DOC 38 kb)
438_2009_434_MOESM3_ESM.doc (36 kb)
Supplemental Fig. 2 (DOC 36 kb)
438_2009_434_MOESM4_ESM.ppt (66 kb)
Supplemental Fig. 3 (PPT 69 kb)
438_2009_434_MOESM5_ESM.ppt (66 kb)
Supplemental Fig. 4 (PPT 68 kb)
438_2009_434_MOESM6_ESM.ppt (70 kb)
Supplemental Fig. 5 (PPT 72 kb)
438_2009_434_MOESM7_ESM.ppt (97 kb)
Supplemental Fig. 6 (PPT 100 kb)
438_2009_434_MOESM8_ESM.ppt (69 kb)
Supplemental Fig. 7 (PPT 69 kb)
438_2009_434_MOESM9_ESM.ppt (75 kb)
Supplemental Fig. 8 (PPT 75 kb)
438_2009_434_MOESM10_ESM.ppt (76 kb)
Supplemental Fig. 9 (PPT 66 kb)
438_2009_434_MOESM11_ESM.doc (34 kb)
Supplemental Table 1 (DOC 34 kb)
438_2009_434_MOESM12_ESM.doc (70 kb)
Supplemental Table 2 (DOC 70 kb)
438_2009_434_MOESM13_ESM.doc (238 kb)
Supplemental Table 3 (DOC 238 kb)
438_2009_434_MOESM14_ESM.doc (40 kb)
Supplemental Table 4 (DOC 40 kb)
438_2009_434_MOESM15_ESM.doc (35 kb)
Supplemental Table 5 (DOC 35 kb)

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Brad W. Porter
    • 1
  • Maya Paidi
    • 2
  • Ray Ming
    • 3
  • Maqsudul Alam
    • 4
  • Wayne T. Nishijima
    • 5
  • Yun J. Zhu
    • 2
  1. 1.Department of Molecular Biosciences and BioengineeringUniversity of Hawai’i at MānoaHonoluluUSA
  2. 2.Hawai’i Agriculture Research CenterAieaUSA
  3. 3.Department of Plant BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Department of MicrobiologyUniversity of Hawai’i at MānoaHonoluluUSA
  5. 5.Department of Plant and Environmental Protection SciencesUniversity of Hawai’i at MānoaHonoluluUSA