Skip to main content

Advertisement

Log in

Mukia maderaspatana (Cucurbitaceae) extract-mediated synthesis of silver nanoparticles to control Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Mosquitoes and mosquito-borne diseases are prone to raise health and economic impacts. Synthetic insecticide-based interventions are indeed in situations of epidemic outbreak and sudden increases of adult mosquitoes. Nanoparticles are being used in many commercial applications and were found that aqueous silver ions can be reduced by an aqueous extract of plant parts to generate extremely stable silver nanoparticles in water. Based on this, silver nanoparticles (SNPs) were synthesized using leaf aqueous extract (LAE) of Mukia maderaspatana. Further, the synthesized SNPs were characterized by UV–visible spectrum, which indicated a strong plasmon resonance at 427 nm. X-ray diffraction (XRD) analysis revealed the average crystalline size of the synthesized SNPs was approximately 64 nm by Debye–Scherrer formulae. Fourier transform infrared (FTIR) spectroscopy analysis revealed the presence of different functional groups like amines, halides, alkanes, alkynes, amides, and esters with respective stretches, which are responsible for the bio-reduction of silver ions. Field emission scanning electron microscopy (FESEM) depicted the spherical morphology of SNPs with size range of 13–34 nm. The larvicidal activity of LAE and SNPs exhibited an effective mortality to Aedes aegypti and Culex quinquefasciatus. The lethal concentration (LC50; LC90) of LAE and SNPs were found to be 0.506; 1.082, 0.392; 0.870 ppm and 0.211; 0.703, 0.094; 0.482 ppm, respectively on A. aegypti and C. quinquefasciatus. Thus, the synthesized SNPs have shown preponderant larvicidal activity, but further studies are needed to formulate the potential larvicidal agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdul Rahuman A, Gopalakrishnan G, Venkatesan P, Geetha K (2008) Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 102:867–873

    Article  PubMed  Google Scholar 

  • Arockiya ARF, Parthiban C, Ganesh Kumar V, Anantharaman P (2012) Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum. Spectro Acta A 99(1):166–173

    Article  Google Scholar 

  • Bagavan A, Abdul Rahuman A, Kamaraj C, Geetha K (2008) Larvicidal activity of saponin from Achyranthes aspera against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 103:223–229

    Article  CAS  PubMed  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotech Prog 22(2):577–583

    Article  CAS  Google Scholar 

  • Choi O, Deng KK, Kim NJ, Rose L Jr, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    Article  CAS  PubMed  Google Scholar 

  • Corbel V, Nosten F, Thanispong K, Luxemburger C, Kongmee M, Chareonviriyaphap T (2013) Challenges and prospects for dengue and malaria control in Thailand, Southeast Asia. Trends Parasitol 29:623–633. doi:10.1016/j.pt.2013.09.007

    Article  PubMed  Google Scholar 

  • Finney DJ (1971) Probit analysis, vol 551. Cambridge University Press, London, pp 68–72

    Google Scholar 

  • Hackenberg S, Scherzed A, Kessler M, Froelich K, Ginzkey C, Koehler C, Burghartz M, Hagen R, Kleinsasser N (2010) Zinc oxide nanoparticles induce photocatalytic cell death in human head and neck squamous cell carcinoma cell lines in vitro. Int J Oncol 37:1583–1590

    CAS  PubMed  Google Scholar 

  • Hussein ASM, Kingston DGI (1982) Screening of plants used in Sudan folk medicine for anticancer activity (II). Fitoterapia 53:119

    Google Scholar 

  • Jayaseelan C, Abdul Rahuman A, Rajakumar G, Vishnu Kirthi A, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Abduz Zahir A, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109:185–194

    Article  PubMed  Google Scholar 

  • Jayaweera DMA (1982) Medicinal plants used in Ceylon. National Science Council, Sri Lanka Publication, Colombo, pp 147–153

    Google Scholar 

  • Kamaraj C, Abdul Rahuman A, Bagavan A (2008) Antifeedant and larvicidal effects of plant extracts against Spodoptera litura (F.), Aedes aegypti L. and Culex quinquefasciatus Say. Parasitol Res 103:325–331

    Article  CAS  PubMed  Google Scholar 

  • Kotakadi VS, Rao YS, Gaddam SA, Prasad TNVKV, Varada Reddy A, Sai Gopala DVR (2013) Simple and rapid biosynthesis of stable silver nanoparticles using dried leaves of Catharanthus roseus. Linn. G. Donn and its antimicrobial activity. Colloids Surf B 105:194–198

    Article  CAS  Google Scholar 

  • Kreuter J, Gelperina S (2008) Use of nanoparticles for cerebral cancer. Tumori 94:271–277

    CAS  PubMed  Google Scholar 

  • Kunkel G (1984) Plants for Human Consumption. Koeltz Scientific Books, pp 393

  • Mubayi A, Chatterji S, Rai PM, Watal G (2012) Evidence based green synthesis of nanoparticles. Adv Mat Lett 3(6):519–525

  • Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3):788–800

    Article  CAS  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110:1815–1822

    Article  PubMed  Google Scholar 

  • Petrus AJA (2012) Mukia maderaspatana (Linn.) M. Roemer: a potentially antidiabetic and vasoprotective functional leafy-vegetable. Pharmacogn J 4(34):1–12

    Article  Google Scholar 

  • Philip D, Unni C (2011) Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (Ocimum sanctum) leaf. Phys E 43(7):1318–1322

    Article  CAS  Google Scholar 

  • Prabakar K, Sivalingam P, Rabeek SIM, Muthuselvam M, Devarajan N, Arjunan A, Karthick R, Suresh MM, Wembonyam JP (2013) Evaluation of antibacterial efficacy of phyto fabricated silver nanoparticles using Mukia scabrella (Musumusukkai) against drug resistance nosocomial gram negative bacterial pathogens. Colloids Surf B: Biointerfaces 104:282–288

    Article  CAS  PubMed  Google Scholar 

  • Raja B, Pugalendi KV (2009) Evaluation of antioxidant activity of Melothria maderaspatana in-vitro. Cent Eur J Biol 5(2):224–230

    Article  Google Scholar 

  • Raju K, Jambulingam P, Sabesan S, Vanmail P (2010) Lymphatic filariasis in India: epidemiology and control measures. J Postgrad Med 56:232–238

    Article  PubMed  Google Scholar 

  • Ramakrishanamacharya CH, Krishnaswamy MR, Bhima RR, Viswanathan S (1996) Anti-inflammatory efficacy of Melothria in active rheumatoid arthritis. Clin Rheumatol 15:214–215

    Article  CAS  PubMed  Google Scholar 

  • Sankar R, Karthik A, Prabu A, Karthik S, Shivashangari KS, Ravikumar V (2013) Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids Surf B: Biointerfaces 108:80–84

    Article  CAS  PubMed  Google Scholar 

  • Sap-Iam N, Homklinchan C, Larpudomlert R, Warisnoicharoen W, Sereemaspun A, Dubas ST (2010) UV irradiation induced silver nanoparticles as mosquito larvicides. J Appl Sci 10(23):3132–3136

    Article  CAS  Google Scholar 

  • Sen-Sung C, Hui-Ting C, Shang-Tzen C, Kum-Hsien T, Wei-June C (2003) Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Biores Technol 89:99–102

    Article  Google Scholar 

  • Spatz JP, Herzog T, Momer S, Ziemann P, Muller M (1999) Micellar inorganic–polymer hybrid systems-a tool for nanolithography. Adv Mater 11(2):149–153

    Article  CAS  Google Scholar 

  • Sriram MI, Kanth SB, Kalishwaralal K, Gurunathan S (2010) Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int J Nanomedicine 5:753–762

    PubMed Central  CAS  PubMed  Google Scholar 

  • Su J, Zhang J, Liu L, Huang Y, Mason RP (2008) Exploring feasibility of multicolored CdTe quantum dots for in vitro and in vivo fluorescent imaging. J Nanosci Nanotechnol 8:1174–1177

    CAS  PubMed  Google Scholar 

  • Subarani S, Sabhanayakam S, Kamaraj C (2013) Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 112:487–499

    Article  PubMed  Google Scholar 

  • Suresh AK, Doktycz MJ, Wang W, Moon JW, Gu B, Meyer HM III, Hensley DK, Allison DP, Phelps TJ, Pelletier DA (2011) Monodispersed biocompatible silver sulfide nanoparticles: Facile extracellular biosynthesis using the γ-proteobacterium, Shewanella oneidensis. Acta Biomater 7:4253–4258

  • Tan WB, Jiang S, Zhang Y (2007) Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials 28:1565–1571

    Article  CAS  PubMed  Google Scholar 

  • Thomas TG, Rao S, Lal S (2004) Mosquito larvicidal properties of essential oil of indigenous plant Ipomoea cairica Linn. Jpn J Infect Dis 57:176–177

    PubMed  Google Scholar 

  • Tripathi A, Chandrasekaran N, Raichur AM, Mukherjee A (2009) Antibacterial applications of silver nanoparticles synthesized by aqueous extract of Azadirachta indica (Neem) leaves. J Biomed Nanotechnol 5(1):93–98

    Article  CAS  PubMed  Google Scholar 

  • Vivekanandhan S, Misra M, Mohanty AK (2009) Biological synthesis of silver nanoparticles using Glycine max (soybean) leaf extract: an investigation on different soybean varieties. J Nanosci Nanotechnol 9(12):6828–6833

    Article  CAS  PubMed  Google Scholar 

  • West JL, Halas NJ (2000) Applications of nanotechnology to biotechnology. Curr Opine Biotech 11:215

    Article  CAS  Google Scholar 

  • World Health Organization (1981) Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. WHO/VBC 81:807–962

    Google Scholar 

  • World Health Organization (2014) World malaria report 2013. Geneva: WHO, 2014. http://www.who.int/malaria/publications/world_malaria_report_2013/en/index.html accessed 26 February 2014

  • Yoon K, Byeon J, Parl J, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Tot Env 373:572–575

    Article  CAS  Google Scholar 

  • Zandonella C (2003) Cell nanotechnology: the tiny toolkit. Nature 423:10–12

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Hussain I, Brust M, Cooper AI (2004) Emulsion-templated gold beads using gold nanoparticles as building blocks. Adv Mater 16(1):16–30

    Article  Google Scholar 

  • Zhang Y, Yang M, Portney NG, Cui D, Budak G, Ozbay E, Ozkan M, Ozkan CS (2008) Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed Microdevices 10:321–328

Download references

Acknowledgments

The authors are grateful to the authorities of Periyar University for providing the necessary facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pachiappan Perumal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chitra, G., Balasubramani, G., Ramkumar, R. et al. Mukia maderaspatana (Cucurbitaceae) extract-mediated synthesis of silver nanoparticles to control Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol Res 114, 1407–1415 (2015). https://doi.org/10.1007/s00436-015-4320-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4320-7

Keywords

Navigation