Skip to main content

Advertisement

Log in

Salivary gland proteome of the human malaria vector, Anopheles campestris-like (Diptera: Culicidae)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Anopheles campestris-like is proven to be a high-potential vector of Plasmodium vivax in Thailand. In this study, A. campestris-like salivary gland proteins were determined and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis, and nano-liquid chromatography-mass spectrometry. The total amount of salivary gland proteins in the mosquitoes aged 3–5 days was approximately 0.1 ± 0.05 μg/male and 1.38 ± 0.01 μg/female. SDS-PAGE analysis revealed at least 12 major proteins found in the female salivary glands and each morphological region of the female glands contained different major proteins. Two-dimensional gel electrophoresis showed approximately 20 major and several minor protein spots displaying relative molecular masses from 10 to 72 kDa with electric points ranging from 3.9 to 10. At least 15 glycoproteins were detected in the female glands. Similar electrophoretic protein profiles were detected comparing the male and proximal-lateral lobes of the female glands, suggesting that these lobes are responsible for sugar feeding. Blood-feeding proteins, i.e., putative 5′-nucleotidase/apyrase, anti-platelet protein, long-form D7 salivary protein, D7-related 1 protein, and gSG6, were detected in the distal-lateral lobes (DL) and/or medial lobes (ML) of the female glands. The major spots related to housekeeping proteins from other arthropod species including Culex quinquefasciatus serine/threonine-protein kinase rio3 expressed in both male and female glands, Ixodes scapularis putative sil1 expressed in DL and ML, and I. scapularis putative cyclophilin A expressed in DL. These results provide information for further study on the salivary gland proteins of A. campestris-like that are involved in hematophagy and disease transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland Science, New York

    Google Scholar 

  • Alves-Silva J, Ribeiro JM, Van Den Abbeele J, Attardo G, Hao Z, Haines LR, Soares MB, Berriman M, Aksoy S, Lehane MJ (2010) An insight into the sialome of Glossina morsitans morsitans. BMC Genomics 11:213

    Article  PubMed  Google Scholar 

  • Angermayr M, Bandlow W (1997) The type of basal promoter determines the regulated or constitutive mode of transcription in the common control region of the yeast gene pair GCY1/RIO1. J Biol Chem 272:31630–31635

    Article  PubMed  CAS  Google Scholar 

  • Anttonen AK, Mahjneh I, Hämäläinen RH, Lagier-Tourenne C, Kopra O, Waris L, Anttonen M, Joensuu T, Kalimo H, Paetau A, Tranebjaerg L, Chaigne D, Koenig M, Eeg-Olofsson O, Udd B, Somer M, Somer H, Lehesjoki AE (2005) The gene disrupted in Marinesco-Sjögren syndrome encodes SIL1, an HSPA5 cochaperone. Nat Genet 37:1309–1311

    Article  PubMed  CAS  Google Scholar 

  • Arca B, Lombardo F, Valenzuela JG, Franscischetti IM, Marinotti O, Coluzzi M, Ribeiro JMC (2005) An updated catalogue of salivary gland transcripts in the adult female mosquito, Anopheles gambiae. J Exp Biol 208:3971–3986

    Article  PubMed  CAS  Google Scholar 

  • Arensburger P, Megy K, Waterhouse RM, Abrudan J, Amedeo P, Antelo B, Bartholomay L, Bidwell S, Caler E, Camara F, Campbell CL, Campbell KS, Casola C, Castro MT, Chandramouliswaran I, Chapman SB, Christley S, Costas J, Eisenstadt E, Feschotte C, Fraser-Liggett C, Guigo R, Haas B, Hammond M, Hansson BS, Hemingway J, Hill SR, Howarth C, Ignell R, Kennedy RC, Kodira CD, Lobo NF, Mao C, Mayhew G, Michel K, Mori A, Liu N, Naveira H, Nene V, Nguyen N, Pearson MD, Pritham EJ, Puiu D, Qi Y, Ranson H, Ribeiro JM, Roberston HM, Severson DW, Shumway M, Stanke M, Strausberg RL, Sun C, Sutton G, Tu ZJ, Tubio JM, Unger MF, Vanlandingham DL, Vilella AJ, White O, White JR, Wondji CS, Wortman J, Zdobnov EM, Birren B, Christensen BM, Collins FH, Cornel A, Dimopoulos G, Hannick LI, Higgs S, Lanzaro GC, Lawson D, Lee NH, Muskavitch MA, Raikhel AS, Atkinson PW (2010) Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science 330:86–88

    Article  PubMed  CAS  Google Scholar 

  • Calvo E, Anderson J, Francischetti IM, Capurro LM de, Bianchi AG de, James AA, Ribeiro JMC, Marinotti O (2004) The transcriptome of adult female Anopheles darlingi salivary glands. Insect Mol Biol 13:73–88

  • Calvo E, Mans BJ, Andersen JF, Ribeiro JM (2006a) Function and evolution of a mosquito salivary protein family. J Biol Chem 281:1935–1942

    Article  PubMed  CAS  Google Scholar 

  • Calvo E, Pham VM, Lombardo F, Arca B, Ribeiro JM (2006b) The sialotranscriptome of adult male Anopheles gambiae mosquitoes. Insect Biochem Mol Biol 36:570–575

    Article  PubMed  CAS  Google Scholar 

  • Calvo E, Dao A, Pham VM, Ribeiro JM (2007) An insight into the sialome of Anopheles funestus reveals an emerging pattern in anopheline salivary protein families. Insect Biochem Mol Biol 37:164–175

    Article  PubMed  CAS  Google Scholar 

  • Calvo E, Pham VM, Marinotti O, Andersen JF, Ribeiro JM (2009) The salivary gland transcriptome of the neotropical malaria vector Anopheles darlingi reveals accelerated evolution of genes relevant to hematophagy. BMC Genomics 10:57

    Article  PubMed  Google Scholar 

  • Cázares-Raga FE, González-Lázaro M, Montero-Solís C, González-Cerón L, Zamudio F, Martínez-Barnetche J, Torres-Monzón JA, Ovilla-Muñoz M, Aguilar-Fuentes J, Rodríguez MH, de la Cruz H-HF (2007) GP35 ANOAL, an abundant acidic glycoprotein of female Anopheles albimanus saliva. Insect Mol Biol 16:187–198

    Article  PubMed  Google Scholar 

  • Champagne DE, Smartt CT, Ribeiro JM, James AA (1995) The salivary gland-specific apyrase of the mosquito Aedes aegypti is a member of the 5′-nucleotidase family. Proc Natl Acad Sci USA 92:694–698

    Article  PubMed  CAS  Google Scholar 

  • Charlab R, Valenzuela JG, Rowton ED, Ribeiro JM (1999) Toward an understanding of the biochemical and pharmacological complexity of the saliva of a hematophagous sand fly Lutzomyia longipalpis. Proc Natl Acad Sci USA 96:15155–15160

    Article  PubMed  CAS  Google Scholar 

  • Chen HH, Zhang RL, Geng YJ, Cheng JQ, Zhang SX, Huang DN, Yu L, Gao ST, Zhu XQ (2007) Identification of differentially expressed genes in female Culex pipiens pallens. Parasitol Res 101:511–515

    Article  PubMed  Google Scholar 

  • Choochote W, Sucharit S, Abeywickreme W (1983) Experiments in crossing two strains of Anopheles barbirostris Van der Wulp 1884 (Diptera: Culicidae) in Thailand. Southeast Asian J Trop Med Public Health 14:204–209

    PubMed  CAS  Google Scholar 

  • Choumet V, Carmi-Leroy A, Laurent C, Lenormand P, Rousselle JC, Namane A, Roth C, Brey PT (2007) The salivary glands and saliva of Anopheles gambiae as an essential step in the Plasmodium life cycle: a global proteomic study. Proteomics 7:3384–3394

    Article  PubMed  CAS  Google Scholar 

  • Dillon RJ, el-Kordy E (1997) Carbohydrate digestion in sandflies: alpha-glucosidase activity in the midgut of Phlebotomus langeroni. Comp Biochem Physiol B Biochem Mol Biol 116:35–40

    Article  PubMed  CAS  Google Scholar 

  • Dong F, Fu Y, Li X, Jiang J, Sun J, Cheng X (2012) Cloning, expression, and characterization of salivary apyrase from Aedes albopictus. Parasitol Res 110:931–937

    Article  PubMed  Google Scholar 

  • Eliason DA (1963) Feeding adult mosquitoes on solid sugars. Nature 200:289

    Article  PubMed  CAS  Google Scholar 

  • Francischetti IM, Valenzuela JG, Ribeiro JM (1999) Anophelin: kinetics and mechanism of thrombin inhibition. Biochemistry 38:16678–16685

    Article  PubMed  CAS  Google Scholar 

  • Francischetti IM, Valenzuela JG, Pham VM, Garfield MK, Ribeiro JM (2002) Toward a catalog for the transcripts and proteins (sialome) from the salivary gland of the malaria vector Anopheles gambiae. J Exp Biol 205:2429–2451

    PubMed  CAS  Google Scholar 

  • Galat A (1999) Variations of sequences and amino acid compositions of proteins that sustain their biological functions: an analysis of the cyclophilin family of proteins. Arch Biochem Biophys 371:149–162

    Article  PubMed  CAS  Google Scholar 

  • Geng YJ, Gao ST, Huang DN, Zhao YR, Liu JP, Li XH, Zhang RL (2009) Differentially expressed genes between female and male adult Anopheles anthropophagus. Parasitol Res 105:843–851

    Article  PubMed  Google Scholar 

  • Ghorbel MT, Murphy D (2011) Suppression subtractive hybridization. Methods Mol Biol 789:237–259

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A, Edwards MJ, Jacobs-Lorena M (2000) The journey of the malaria parasite in the mosquito: hopes for the new century. Parasitol Today 16:196–201

    Article  PubMed  CAS  Google Scholar 

  • Gontijo NF, Almeida-Silva S, Costa FF, Mares-Guia ML, Williams P, Melo MN (1998) Lutzomyia longipalpis: pH in the gut, digestive glycosidases, and some speculations upon Leishmania development. Exp Parasitol 90:212–219

    Article  PubMed  CAS  Google Scholar 

  • Han H, Peng J, Hong Y, Fu Z, Xu J, Lin J, Tao J (2012) Molecular cloning and characterization of a cyclophilin A homologue from Schistosoma japonicum. Parasitol Res 111:807–817

    Article  PubMed  Google Scholar 

  • Isawa H, Orito Y, Iwanaga S, Jingushi N, Morita A, Chinzei Y, Yuda M (2007) Identification and characterization of a new kallikrein-kinin system inhibitor from the salivary glands of the malaria vector mosquito Anopheles stephensi. Insect Biochem Mol Biol 37:466–477

    Article  PubMed  CAS  Google Scholar 

  • Jacobson RL, Schlein Y (2001) Phlebotomus papatasi and Leishmania major parasites express alpha-amylase and alpha-glucosidase. Acta Trop 78:41–49

    Article  PubMed  CAS  Google Scholar 

  • James AA (2003) Blocking malaria parasite invasion of mosquito salivary glands. J Exp Biol 206:3817–3821

    Article  PubMed  Google Scholar 

  • James AA, Blackmer K, Racioppi JV (1989) A salivary gland-specific, maltase-like gene of the vector mosquito, Aedes aegypti. Gene 75:73–83

    Article  PubMed  CAS  Google Scholar 

  • Jaresitthikunchai J, Phaonakrop N, Kittisenachai S, Roytrakul S (2009) Rapid in-gel digestion protocol for protein identification by peptide mass fingerprint. In: Proceeding of the 2nd biochemistry and molecular biology conference: biochemistry and molecular biology for regional sustainable development. May 7–8 Khon Kaen, Thailand, p 29

  • Jariyapan N, Choochote W, Jitpakdi A, Harnnoi T, Siriyasatein P, Wilkinson MC, Bates PA (2006) A glycine- and glutamate-rich protein is female salivary gland-specific and abundant in the malaria vector Anopheles dirus B (Diptera: Culicidae). J Med Entomol 43:867–874

    Article  PubMed  CAS  Google Scholar 

  • Jariyapan N, Choochote W, Jitpakdi A, Harnnoi T, Siriyasatein P, Wilkinson M, Junkum A, Bates PA (2007) Salivary gland proteins of the human malaria vector, Anopheles dirus B (Diptera: Culicidae). Rev Inst Med trop S Paulo 49:5–10

    Article  PubMed  Google Scholar 

  • Jariyapan N, Baimai V, Poovorawan Y, Roytrakul S, Saeung A, Thongsahuan S, Suwannamit S, Otsuka Y, Choochote W (2010) Analysis of female salivary gland proteins of the Anopheles barbirostris complex (Diptera: Culicidae) in Thailand. Parasitol Res 107:509–516

    Article  PubMed  Google Scholar 

  • Jariyapan N, Roytrakul S, Paemanee A, Junkum A, Saeung A, Thongsahuan S, Sor-Suwan S, Phattanawiboon B, Poovorawan Y, Choochote W (2012) Proteomic analysis of salivary glands of female Anopheles barbirostris species A2 (Diptera: Culicidae) by two-dimensional gel electrophoresis and mass spectrometry. Parasitol Res 111:1239–1249

    Article  PubMed  Google Scholar 

  • Juhn J, Naeem-Ullah U, Maciel Guedes BA, Majid A, Coleman J, Paolucci Pimenta PF, Akram W, James AA, Marinotti O (2011) Spatial mapping of gene expression in the salivary glands of the dengue vector mosquito, Aedes aegypti. Parasit Vectors 4:1

    Article  PubMed  CAS  Google Scholar 

  • Kalume DE, Okulate M, Zhong J, Reddy R, Suresh S, Deshpande N, Kumar N, Pandey A (2005) A proteomic analysis of salivary glands of female Anopheles gambiae mosquito. Proteomics 5:3765–3777

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Choochote W, Jitpakdi A, Junkum A, Park SJ, Min GS (2003) Establishment of a self-mating mosquito colony of Anopheles sinensis from Korea. Korean J Entomol 33:267–271

    Article  Google Scholar 

  • Langner KF, Darpel KE, Denison E, Drolet BS, Leibold W, Mellor PS, Mertens PP, Nimtz M, Greiser-Wilke I (2007) Collection and analysis of salivary proteins from the biting midge Culicoides nubeculosus (Diptera: Ceratopogonidae). J Med Entomol 44:238–248

    Article  PubMed  CAS  Google Scholar 

  • Malandain H (2005) IgE-reactive carbohydrate epitopes–classification, cross-reactivity, and clinical impact. Eur Ann Allergy Clin Immunol 37:122–128

    PubMed  CAS  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  PubMed  CAS  Google Scholar 

  • Marinotti O, James AA (1990) An α-glucosidase in the salivary glands of the vector mosquito, Aedes aegypti. Insect Biochem 20:619–623

    Article  CAS  Google Scholar 

  • Marinotti O, Brito M, Moreira CK (1996) Apyrase and alpha-glucosidase in the salivary glands of Aedes albopictus. Comp Biochem Physiol 113B:675–679

    CAS  Google Scholar 

  • Moreira-Ferro CK, Marinotti O, Bijovsky AT (1999) Morphological and biochemical analyses of the salivary glands of the malaria vector, Anopheles darlingi. Tissue Cell 31:264–273

    Article  PubMed  CAS  Google Scholar 

  • Nabby-Hansen S, Waterfield MD, Cramer R (2001) Proteomics-post-genomic cartography to understand gene function. Trands Pharmacol Sci 22:376–384

    Article  Google Scholar 

  • Nascimento EP, dos Santos MR, Marinotti O (2000) Salivary gland proteins of the mosquito Culex quinquefasciatus. Arch Insect Biochem Physiol 43:9–15

    Article  PubMed  CAS  Google Scholar 

  • Perkins DN, Pappin DJC, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  CAS  Google Scholar 

  • Phumee A, Preativatanyou K, Kraivichain K, Thavara U, Tawatsin A, Phusup Y, Siriyasatien P (2011) Morphology and protein profiles of salivary glands of filarial vector mosquito Mansonia uniformis; possible relation to blood feeding process. Asian Biomed 5:353–360

    CAS  Google Scholar 

  • Raghavendra K, Barik TK, Reddy BP, Sharma P, Dash AP (2011) Malaria vector control: from past to future. Parasitol Res 108:757–779

    Article  PubMed  Google Scholar 

  • Ribeiro JMC, Arca B (2009) From sialomes to the sialoverse: an insight into the salivary potion of blood feeding insects. Adv Insect Physiol 37:59–118

    Article  Google Scholar 

  • Ribeiro JMC, Francischetti IM (2003) Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol 48:73–88

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro JM, Charlab R, Pham VM, Garfield M, Valenzuela JG (2004) An insight into the salivary transcriptome and proteome of the adult female mosquito Culex pipiens quinquefasciatus. Insect Biochem Mol Biol 34:543–563

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro JM, Arca B, Lombardo F, Calvo E, Pham VM, Chandra PK, Wikel SK (2007) An annotated catalogue of salivary gland transcripts in the adult female mosquito, Aedes aegypti. BMC Genomic 8:6

    Article  Google Scholar 

  • Ribeiro JM, Mans BJ, Arca B (2010) An insight into the sialome of blood-feeding Nematocera. Insect Biochem Mol Biol 40:767–784

    Article  PubMed  CAS  Google Scholar 

  • Roesch A, Vogt T, Stolz W, Dugas M, Landthaler M, Becker B (2003) Discrimination between gene expression patterns in the invasive margin and the tumour core of malignant melanomas. Melanoma Res 13:503–509

    Article  PubMed  CAS  Google Scholar 

  • Russell CL, Heesom KJ, Arthur CJ, Helps CR, Mellor PS, Day MJ, Torsteinsdottir S, Björnsdóttir TS, Wilson AD (2009) Identification and isolation of cDNA clones encoding the abundant secreted proteins in the saliva proteome of Culicoides nubeculosus. Insect Mol Biol 18:383–393

    Article  PubMed  CAS  Google Scholar 

  • Satoh K, Shimokawa H, Berk BC (2010) Cyclophilin A: promising new target in cardiovascular therapy. Circ J 74:2249–2256

    Article  PubMed  CAS  Google Scholar 

  • Sidjanski SP, Vanderberg JP, Sinnis P (1997) Anopheles stephensi salivary glands bear receptors for region I of the circumsporozoite protein of Plasmodium falciparum. Mol Biochem Parasitol 90:33–41

    Article  PubMed  CAS  Google Scholar 

  • Siriyasatien P, Tangthongchaiwiriya K, Jariyapan N, Kaewsaitiam S, Poovorawan Y, Thavara U (2005) Analysis of salivary gland proteins of the mosquito Armigeres subalbatus. Southeast Asian J Trop Med Public Health 36:64–67

    PubMed  Google Scholar 

  • Souza-Neto JA, Machado FP, Lima JB, Valle D, Ribolla PE (2007) Sugar digestion in mosquitoes: identification and characterization of three midgut alpha-glucosidases of the neo-tropical malaria vector Anopheles aquasalis (Diptera: Culicidae). Comp Biochem Physiol A Mol Integr Physiol 147:993–1000

    Article  PubMed  Google Scholar 

  • Sun D, McNicol A, James AA, Peng Z (2006) Expression of functional recombinant mosquito salivary apyrase: a potential therapeutic platelet aggregation inhibitor. Platelets 17:178–184

    Article  PubMed  CAS  Google Scholar 

  • Suwan N, Wilkinson MC, Crampton JM, Bates PA (2002) Expression of D7 and D7-related proteins in the salivary glands of the human malaria mosquito Anopheles stephensi. Insect Mol Biol 11:223–232

    Article  PubMed  CAS  Google Scholar 

  • Suwannamit S, Baimai V, Otsuka Y, Saeung A, Thongsahuan S, Tuetun B, Apiwathnasorn C, Jariyapan N, Somboon P, Takaoka H, Choochote W (2009) Cytogenetic and molecular evidence for an additional new species within the taxon Anopheles barbirostris (Diptera: Culicidae) in Thailand. Parasitol Res 104:905–918

    Article  PubMed  Google Scholar 

  • Thongsahuan S, Baimai V, Otsuka Y, Saeung A, Tuetun B, Jariyapan N, Suwannamit S, Somboon P, Jitpakdi A, Takaoka H, Choochote W (2009) Karyotypic variation and geographic distribution of Anopheles campestris-like (Diptera: Culicidae) in Thailand. Mem Inst Oswaldo Cruz 104:558–566

    Article  PubMed  CAS  Google Scholar 

  • Thongsahuan S, Baimai V, Junkum A, Saeung A, Min GS, Joshi D, Park MH, Somboon P, Suwonkerd W, Tippawangkosol P, Jariyapan N, Choochote W (2011) Susceptibility of Anopheles campestris-like and Anopheles barbirostris species complexes to Plasmodium falciparum and Plasmodium vivax in Thailand. Mem Inst Oswaldo Cruz 106:105–112

    Article  PubMed  Google Scholar 

  • Valenzuela JG, Francischetti IM, Ribeiro JM (1999) Purification, cloning, and synthesis of a novel salivary anti-thrombin from the mosquito Anopheles albimanus. Biochemistry 38:11209–11215

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela JG, Charlab R, Gonzalez EC, de Miranda-Santos IK, Marinotti O, Francischetti IM, Ribeiro JM (2002) The D7 family of salivary proteins in blood sucking diptera. Insect Mol Biol 11:149–155

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela JG, Francischetti IM, Pham VM, Garfield MK, Ribeiro JMC (2003) Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito. Insect Biochem Mol Biol 33:717–732

    Article  PubMed  CAS  Google Scholar 

  • Wal JM (2001) Structure and function of milk allergens. Allergy 56:35–38

    Article  PubMed  Google Scholar 

  • Wasinpiyamongkol L, Patramool S, Luplertlop N, Surasombatpattana P, Doucoure S, Mouchet F, Séveno M, Remoue F, Demettre E, Brizard JP, Jouin P, Biron DG, Thomas F, Missé D (2010) Blood-feeding and immunogenic Aedes aegypti saliva proteins. Proteomics 10:1906–1916

    Article  PubMed  CAS  Google Scholar 

  • WHO (2008) WHO World Malaria Report. WHO, Geneva. http://www.who.int/malaria/wmr2008/malaria2008.pdf. Accessed 1 October 2012

  • Wilson AD, Heesom KJ, Mawby WJ, Mellor PS, Russell CL (2008) Identification of abundant proteins and potential allergens in Culicoides nubeculosus salivary glands. Vet Immunol Immunopathol 122:94–103

    Article  PubMed  CAS  Google Scholar 

  • Wright KA (1969) The anatomy of salivary glands of Anopheles stephensi Liston. Can J Zool 47:579–587

    Article  Google Scholar 

  • Wu W, Chen J, Zeng S, Zhang Z, Gan W, Yu X, Hu X (2011) Molecular cloning, expression, and characterization of cyclophilin A from Clonorchis sinensis. Parasitol Res 109:345–351

    Article  PubMed  Google Scholar 

  • Xiang F, Zhang J, Zhou Y, Li Z, Gong H, Zhou J (2009) Proteomic analysis of proteins in the salivary glands of the fed and unfed female tick Rhipicephalus haemaphysaloides. Agricultural Sciences in China 8:121–127

    Article  CAS  Google Scholar 

  • Xu W, Peng Z, Simons FER (1998) Isolation of a cDNA encoding Aed a 3, a 30 kDa IgE-binding protein of mosquito Aedes aegypti saliva. J Allergy Clin Immunol 101:S203

    Google Scholar 

  • Yoshida S, Sudo T, Niimi M, Tao L, Sun B, Kambayashi J, Watanabe H, Luo E, Matsuoka H (2008) Inhibition of collagen-induced platelet aggregation by anopheline antiplatelet protein, a saliva protein from a malaria vector mosquito. Blood 111:2007–2014

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Thailand Research Fund (RMU5180011 to NJ), the Thailand Research Fund through the Royal Golden Jubilee Ph.D. program (PHD/0149/2551) and the Faculty of Medicine Endowment Fund, Chiang Mai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narissara Jariyapan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sor-suwan, S., Jariyapan, N., Roytrakul, S. et al. Salivary gland proteome of the human malaria vector, Anopheles campestris-like (Diptera: Culicidae). Parasitol Res 112, 1065–1075 (2013). https://doi.org/10.1007/s00436-012-3233-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-3233-y

Keywords

Navigation