Skip to main content

Advertisement

Log in

Norepinephrine induced epithelial–mesenchymal transition in HT-29 and A549 cells in vitro

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Norepinephrine (NE) has been implicated in epithelial–mesenchymal transition (EMT) of cancer cells. However, the underlying mechanism is poorly understood. The goal of this study was to explore the effect of NE on cancer cell EMT and to investigate the potential mechanism.

Methods

HT-29 and A549 cells were treated with NE, β-adrenergic receptor (β-AR) antagonist (propranolol) or inhibitor of transforming growth factor-β (TGF-β) receptor type I kinase (Ly2157299). Morphology of cells was observed with optical and electron microscope and immunofluorescence staining. Cellular migration and invasion were tested with transwell migration assay and Matrigel invasion assay, respectively. TGF-β1 and cyclic adenosine monophosphate (cAMP) were quantified. EMT markers and signaling pathway were measured by RT-PCR and western blot.

Results

NE stimulated TGF-β1 secretion and intracellular cAMP synthesis, induced morphological alterations in HT-29 and A549 cells, and enhanced their ability of migration and invasion. EMT markers induction was observed in NE-treated cancer cells. The effect of NE could be inhibited by propranolol or Ly2157299. β-AR/TGF-β1 signaling/p-Smad3/Snail and β-AR/TGF-β1 signaling/HIF-1α/Snail were two signaling pathways.

Conclusion

These findings demonstrated that TGF-β1 signaling pathway was a significant factor of NE-induced cancer cells EMT. The data also suggested that psychological stress might be a risk factor which enhances the ability of migration or invasion of cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akhurst RJ, Derynck R (2001) TGF-β signaling in cancer—a double-edged sword. Trends Cell Biol 11(11):S44–S51. doi:10.1016/S0962-8924(01)02130-4

    Article  PubMed  CAS  Google Scholar 

  • Barbieri A, Bimonte S, Palma G, Luciano A, Rea D, Giudice A, Scognamiglio G, La Mantia E, Franco R, Perdona S, De Cobelli O, Ferro M, Zappavigna S, Stiuso P, Caraglia M, Arra C (2015) The stress hormone norepinephrine increases migration of prostate cancer cells in vitro and in vivo. Int J Oncol. doi:10.3892/ijo.2015.3038

    PubMed  Google Scholar 

  • Barron TI, Connolly RM, Sharp L, Bennett K, Visvanathan K (2011) Beta blockers and breast cancer mortality: a population-based study. J Clin Oncol 29(19):2635–2644. doi:10.1200/JCO.2010.33.5422

    Article  PubMed  CAS  Google Scholar 

  • Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E, Jung A, Kirchner T (2005) Invasion and metastasis in colorectal cancer: epithelial–mesenchymal transition, mesenchymal–epithelial transition, stem cells and β-catenin. Cells Tissues Organs 179(1–2):56–65. doi:10.1159/000084509

    Article  PubMed  CAS  Google Scholar 

  • Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Cespedes MV, Sevillano M, Nadal C, Jung P, Zhang XH, Byrom D, Riera A, Rossell D, Mangues R, Massague J, Sancho E, Batlle E (2012) Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell 22(5):571–584. doi:10.1016/j.ccr.2012.08.013

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Choi MJ, Cho KH, Lee S, Bae YJ, Jeong KJ, Rha SY, Choi EJ, Park JH, Kim JM, Lee JS, Mills GB, Lee HY (2014) hTERT mediates norepinephrine-induced Slug expression and ovarian cancer aggressiveness. Oncogene. doi:10.1038/onc.2014.270

    Google Scholar 

  • de Jong JS, van Diest PJ, van der Valk P, Baak JP (1998) Expression of growth factors, growth-inhibiting factors, and their receptors in invasive breast cancer. II: correlations with proliferation and angiogenesis. J Pathol 184(1):53–57. doi:10.1002/(SICI)1096-9896(199801)184:1<53:AID-PATH6>3.0.CO;2-7

    Article  PubMed  Google Scholar 

  • Deng GH, Liu J, Zhang J, Wang Y, Peng XC, Wei YQ, Jiang Y (2014a) Exogenous norepinephrine attenuates the efficacy of sunitinib in a mouse cancer model. J Exp Clin Cancer Res 33:21. doi:10.1186/1756-9966-33-21

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng YT, Zhong WN, Jiang Y (2014b) Measurement of distress and its alteration during treatment in patients with nasopharyngeal carcinoma. Head Neck 36(8):1077–1086. doi:10.1002/hed.23412

    Article  PubMed  Google Scholar 

  • Elenkov IJ, Chrousos GP (2002) Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann N Y Acad Sci 966:290–303

    Article  PubMed  CAS  Google Scholar 

  • Entschladen F, Drell TL, Lang K, Joseph J, Zaenker KS (2004) Tumour-cell migration, invasion, and metastasis: navigation by neurotransmitters. Lancet Oncol 5(4):254–258. doi:10.1016/S1470-2045(04)01431-7S1470204504014317

    Article  PubMed  CAS  Google Scholar 

  • Fernando RI, Castillo MD, Litzinger M, Hamilton DH, Palena C (2011) IL-8 signaling plays a critical role in the epithelial–mesenchymal transition of human carcinoma cells. Cancer Res 71(15):5296–5306. doi:10.1158/0008-5472.CAN-11-0156

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Giannelli G, Villa E, Lahn M (2014) Transforming growth factor-β as a therapeutic target in hepatocellular carcinoma. Cancer Res 74(7):1890–1894. doi:10.1158/0008-5472.CAN-14-0243

    Article  PubMed  CAS  Google Scholar 

  • Glaser R, Kiecolt-Glaser JK (2005) Stress-induced immune dysfunction: implications for health. Nat Rev Immunol 5(3):243–251. doi:10.1038/nri1571

    Article  PubMed  CAS  Google Scholar 

  • Hasina R, Matsumoto K, Matsumoto-Taniura N, Kato I, Sakuda M, Nakamura T (1999) Autocrine and paracrine motility factors and their involvement in invasiveness in a human oral carcinoma cell line. Br J Cancer 80(11):1708–1717. doi:10.1038/sj.bjc.6690587

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hassan S, Karpova Y, Baiz D, Yancey D, Pullikuth A, Flores A, Register T, Cline JM, D’Agostino R Jr, Danial N, Datta SR, Kulik G (2013) Behavioral stress accelerates prostate cancer development in mice. J Clin Investig 123(2):874–886. doi:10.1172/JCI63324

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jia L, Jin H, Zhou J, Chen L, Lu Y, Ming Y, Yu Y (2013) A potential anti-tumor herbal medicine, Corilagin, inhibits ovarian cancer cell growth through blocking the TGF-β signaling pathways. BMC Complement Altern Med 13:33. doi:10.1186/1472-6882-13-33

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jia Y, Wu D, Yun F, Shi L, Luo N, Liu Z, Shi Y, Sun Q, Jiang L, Wang S, Du M (2014) Transforming growth factor-β1 regulates epithelial–mesenchymal transition in association with cancer stem-like cells in a breast cancer cell line. Int J Clin Exp Med 7(4):865–872

    PubMed  PubMed Central  Google Scholar 

  • Kiecolt-Glaser JK, Loving TJ, Stowell JR, Malarkey WB, Lemeshow S, Dickinson SL, Glaser R (2005) Hostile marital interactions, proinflammatory cytokine production, and wound healing. Arch Gen Psychiatry 62(12):1377–1384. doi:10.1001/archpsyc.62.12.1377

    Article  PubMed  Google Scholar 

  • Liu J, Deng GH, Zhang J, Wang Y, Xia XY, Luo XM, Deng YT, He SS, Mao YY, Peng XC, Wei YQ, Jiang Y (2014a) The effect of chronic stress on anti-angiogenesis of sunitinib in colorectal cancer models. Psychoneuroendocrinology 52C:130–142. doi:10.1016/j.psyneuen.2014.11.008

    Google Scholar 

  • Liu RY, Zeng Y, Lei Z, Wang L, Yang H, Liu Z, Zhao J, Zhang HT (2014b) JAK/STAT3 signaling is required for TGF-β-induced epithelial–mesenchymal transition in lung cancer cells. Int J Oncol 44(5):1643–1651. doi:10.3892/ijo.2014.2310

    PubMed  CAS  Google Scholar 

  • Massague J, Chen YG (2000) Controlling TGF-β signaling. Genes Dev 14(6):627–644

    PubMed  CAS  Google Scholar 

  • Melhem-Bertrandt A, Chavez-Macgregor M, Lei X, Brown EN, Lee RT, Meric-Bernstam F, Sood AK, Conzen SD, Hortobagyi GN, Gonzalez-Angulo AM (2011) Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J Clin Oncol 29(19):2645–2652. doi:10.1200/JCO.2010.33.4441

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Moreno-Bueno G, Peinado H, Molina P, Olmeda D, Cubillo E, Santos V, Palacios J, Portillo F, Cano A (2009) The morphological and molecular features of the epithelial-to-mesenchymal transition. Nat Protoc 4(11):1591–1613. doi:10.1038/nprot.2009.152

    Article  PubMed  CAS  Google Scholar 

  • Neuzillet C, Tijeras-Raballand A, Cohen R, Cros J, Faivre S, Raymond E, de Gramont A (2015) Targeting the TGFβ pathway for cancer therapy. Pharmacol Ther 147C:22–31. doi:10.1016/j.pharmthera.2014.11.001

    Article  Google Scholar 

  • Qian D, Lin HY, Wang HM, Zhang X, Liu DL, Li QL, Zhu C (2004) Involvement of ERK1/2 pathway in TGF-β1-induced VEGF secretion in normal human cytotrophoblast cells. Mol Reprod Dev 68(2):198–204. doi:10.1002/mrd.20061

    Article  PubMed  CAS  Google Scholar 

  • Reiche EM, Nunes SO, Morimoto HK (2004) Stress, depression, the immune system, and cancer. Lancet Oncol 5(10):617–625. doi:10.1016/S1470-2045(04)01597-9

    Article  PubMed  CAS  Google Scholar 

  • Shan T, Cui X, Li W, Lin W, Li Y, Chen X, Wu T (2014) Novel regulatory program for norepinephrine-induced epithelial–mesenchymal transition in gastric adenocarcinoma cell lines. Cancer Sci 105(7):847–856. doi:10.1111/cas.12438

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shankar J, Messenberg A, Chan J, Underhill TM, Foster LJ, Nabi IR (2010) Pseudopodial actin dynamics control epithelial–mesenchymal transition in metastatic cancer cells. Cancer Res 70(9):3780–3790. doi:10.1158/0008-5472.CAN-09-4439

    Article  PubMed  CAS  Google Scholar 

  • Sigala B, McKee C, Soeda J, Pazienza V, Morgan M, Lin CI, Selden C, Vander Borght S, Mazzoccoli G, Roskams T, Vinciguerra M, Oben JA (2013) Sympathetic nervous system catecholamines and neuropeptide Y neurotransmitters are upregulated in human NAFLD and modulate the fibrogenic function of hepatic stellate cells. PLoS ONE 8(9):e72928. doi:10.1371/journal.pone.0072928PONE-D-13-20898

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA, Tangkanangnukul V, Arevalo JM, Morizono K, Karanikolas BD, Wu L, Sood AK, Cole SW (2010) The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res 70(18):7042–7052. doi:10.1158/0008-5472.CAN-10-0522

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Spiegel D (2012) Mind matters in cancer survival. Psychooncology 21(6):588–593. doi:10.1002/pon.3067

    Article  PubMed  PubMed Central  Google Scholar 

  • Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, Lu C, Jennings NB, Armaiz-Pena G, Bankson JA, Ravoori M, Merritt WM, Lin YG, Mangala LS, Kim TJ, Coleman RL, Landen CN, Li Y, Felix E, Sanguino AM, Newman RA, Lloyd M, Gershenson DM, Kundra V, Lopez-Berestein G, Lutgendorf SK, Cole SW, Sood AK (2006) Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 12(8):939–944. doi:10.1038/nm1447

    Article  PubMed  CAS  Google Scholar 

  • Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454. doi:10.1038/nrc822

    Article  PubMed  CAS  Google Scholar 

  • Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial–mesenchymal transitions in development and disease. Cell 139(5):871–890. doi:10.1016/j.cell.2009.11.007

    Article  PubMed  CAS  Google Scholar 

  • Thornton LM, Andersen BL, Blakely WP (2010) The pain, depression, and fatigue symptom cluster in advanced breast cancer: covariation with the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. Health Psychol 29(3):333–337. doi:10.1037/a0018836

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsushima H, Ito N, Tamura S, Matsuda Y, Inada M, Yabuuchi I, Imai Y, Nagashima R, Misawa H, Takeda H, Matsuzawa Y, Kawata S (2001) Circulating transforming growth factor β1 as a predictor of liver metastasis after resection in colorectal cancer. Clin Cancer Res 7(5):1258–1262

    PubMed  CAS  Google Scholar 

  • Wang Y, Zou L, Jiang M, Wei Y, Jiang Y (2013) Measurement of distress in Chinese inpatients with lymphoma. Psychooncology 22(7):1581–1586. doi:10.1002/pon.3170

    Article  PubMed  Google Scholar 

  • Wikstrom P, Stattin P, Franck-Lissbrant I, Damber JE, Bergh A (1998) Transforming growth factor β1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate 37(1):19–29. doi:10.1002/(SICI)1097-0045(19980915)37:1<19:AID-PROS4>3.0.CO;2-3

    Article  PubMed  CAS  Google Scholar 

  • Xie D, Gore C, Liu J, Pong RC, Mason R, Hao G, Long M, Kabbani W, Yu L, Zhang H, Chen H, Sun X, Boothman DA, Min W, Hsieh JT (2010) Role of DAB2IP in modulating epithelial-to-mesenchymal transition and prostate cancer metastasis. Proc Natl Acad Sci USA 107(6):2485–2490. doi:10.1073/pnas.0908133107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xu J, Lamouille S, Derynck R (2009) TGF-β-induced epithelial to mesenchymal transition. Cell Res 19(2):156–172. doi:10.1038/cr.2009.5

    Article  PubMed  CAS  Google Scholar 

  • Yadav A, Kumar B, Datta J, Teknos TN, Kumar P (2011) IL-6 promotes head and neck tumor metastasis by inducing epithelial–mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Mol Cancer Res 9(12):1658–1667. doi:10.1158/1541-7786.MCR-11-0271

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang EV, Sood AK, Chen M, Li Y, Eubank TD, Marsh CB, Jewell S, Flavahan NA, Morrison C, Yeh PE, Lemeshow S, Glaser R (2006a) Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res 66(21):10357–10364. doi:10.1158/0008-5472.CAN-06-2496

    Article  PubMed  CAS  Google Scholar 

  • Yang QC, Zeng BF, Shi ZM, Dong Y, Jiang ZM, Huang J, Lv YM, Yang CX, Liu YW (2006b) Inhibition of hypoxia-induced angiogenesis by trichostatin A via suppression of HIF-1α activity in human osteosarcoma. J Exp Clin Cancer Res 25(4):593–599

    PubMed  CAS  Google Scholar 

  • Yang EV, Kim SJ, Donovan EL, Chen M, Gross AC, Webster Marketon JI, Barsky SH, Glaser R (2009) Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression. Brain Behav Immun 23(2):267–275. doi:10.1016/j.bbi.2008.10.005

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang R, Lin Q, Gao HB, Zhang P (2014) Stress-related hormone norepinephrine induces interleukin-6 expression in GES-1 cells. Braz J Med Biol Res 47(2):101–109. doi:10.1590/1414-431X20133346

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zlobec I, Lugli A (2010) Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: tumor budding as oncotarget. Oncotarget 1(7):651–661

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (81172202). We thank Lei Deng, M.D. and Mr Di Luo for the English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Jiang.

Ethics declarations

Conflict of interest

We declare that no conflict of interest exists in this manuscript.

Informed consent and ethical standard

There is not any informed consent or any ethical issue involved in this study.

Additional information

Jie Zhang and Yao-tiao Deng have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Deng, Yt., Liu, J. et al. Norepinephrine induced epithelial–mesenchymal transition in HT-29 and A549 cells in vitro. J Cancer Res Clin Oncol 142, 423–435 (2016). https://doi.org/10.1007/s00432-015-2044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-015-2044-9

Keywords

Navigation