Skip to main content

Advertisement

Log in

Loss of fatty acid synthase suppresses the malignant phenotype of colorectal cancer cells by down-regulating energy metabolism and mTOR signaling pathway

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Altered cellular metabolism has received increased attention as an important hallmark of cancer. Activation of FASN has been found to be involved in many human tumors. Despite extensive research in FASN function on cancer, the underlying mechanism is not entirely understood yet.

Methods

Cerulenin was used to suppress the FASN expression in human colorectal cancer cell lines (HT29 and LoVo). Expression of PI3K, Akt, p-Akt, mTOR, p-mTOR, FASN, and AZGP1 was measured using western blotting and qPCR. ATP and lactic acid were assessed to investigate the activation of energy metabolism. Cell cytotoxicity assay was studied by cell counting kit-8 assay. The capacity of cell proliferation and migration was investigated by clonogenic and invasion assay. Analysis of apoptosis and the cell cycle was detected by flow cytometry.

Results

We found that the expression of FASN was down-regulated, while the expression of PI3K, p-Akt, p-mTOR, and AZGP1 was down-regulated in HT29 and LoVo cells treated with FASN inhibitor. Proliferation was reduced in FASN inhibitor-treated cells, which is consistent with an increased apoptosis rate. Furthermore, the migration of FASN inhibitor-treated cells was decreased and the content of ATP and lactic acid was also dropped.

Conclusion

These findings suggest that inhibited FASN suppresses the malignant phenotype of colorectal cancer cells by down-regulating energy metabolism and mTOR signaling pathway. The results have paved the way to understand the relations of FASN, mTOR signaling pathway, and energy metabolism in colorectal cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

FASN:

Fatty acid synthase

mTOR:

Mammalian target of rapamycin

PI3K:

Phosphatidylinositol 3-kinase

Akt:

Serine/threonine kinase

ATP:

Adenosine 5′-triphosphate

OXPHOS:

Oxidative phosphorylation

AZGP1:

Zn-alpha-2-glycoprotein 1

References

  • Alo’ PL, Visca P, Marci A, Mangoni A, Botti C, Di TU (1996) Expression of fatty acid synthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients. Cancer 77(3):474–482

    Article  PubMed  Google Scholar 

  • Bandyopadhyay S, Zhan R, Wang Y, Pai SK, Hirota S, Hosobe S et al (2006) Mechanism of apoptosis induced by the inhibition of fatty acid synthase in breast cancer cells. Cancer Res 66(11):5934–5940

    Article  PubMed  CAS  Google Scholar 

  • Bellacosa A, Kumar CC, Di CA, Testa JR (2005) Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res 94:29–86

    Article  PubMed  CAS  Google Scholar 

  • Bongaerts GP, van Halteren HK, Verhagen CA, Wagener DJ (2006) Cancer cachexia demonstrates the energetic impact of gluconeogenesis in human metabolism. Med Hypotheses 67(5):1213–1222

    Article  PubMed  CAS  Google Scholar 

  • Chang L, Tian X, Lu Y, Jia M, Wu P, Huang P (2014) Alpha-2-glycoprotein 1(AZGP1) regulates biological behaviors of LoVo cells by down-regulating mTOR signaling pathway and endogenous fatty acid synthesis. PLoS One 9(6):e99254

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiang CT, Way TD, Tsai SJ, Lin JK (2007) Diosgenin, a naturally occurring steroid, suppresses fatty acid synthase expression in HER2-overexpressing breast cancer cells through modulating Akt, mTOR and JNK phosphorylation. FEBS Lett 581(30):5735–5742

    Article  PubMed  CAS  Google Scholar 

  • Chiaradonna F, Moresco RM, Airoldi C, Gaglio D, Palorini R, Nicotra F et al (2012) From cancer metabolism to new biomarkers and drug targets. Biotechnol Adv 30(1):30–51

    Article  PubMed  CAS  Google Scholar 

  • Chuang HY, Chang YF, Hwang JJ (2011) Antitumor effect of orlistat, a fatty acid synthase inhibitor, is via activation of caspase-3 on human colorectal carcinoma-bearing animal. Biomed Pharmacother 65(4):286–292

    Article  PubMed  CAS  Google Scholar 

  • Dashnamoorthy R, Abermil N, Behesti A, Kozlowski P, Lansigan F, Kinlaw WB et al (2014) The lipid addiction of diffuse large B-cell lymphoma (DLBCL) and potential treatment strategies with novel fatty acid synthase (FASN) small molecule inhibitors. Blood 124(21):4490

    Google Scholar 

  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11–20

    Article  PubMed  CAS  Google Scholar 

  • Deepa PR, Vandhana S, Jayanthi U, Krishnakumar S (2012) Therapeutic and toxicologic evaluation of anti-lipogenic agents in cancer cells compared with non-neoplastic cells. Basic Clin Pharmacol Toxicol 110:494–503

    Article  PubMed  CAS  Google Scholar 

  • Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL et al (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39:171–183

    Article  PubMed  PubMed Central  Google Scholar 

  • Epstein JI, Carmichael M, Partin AW (1995) OA-519 (fatty acid synthase) as an independent predictor of pathologic state in adenocarcinoma of the prostate. Urology 45(1):81–86

    Article  PubMed  CAS  Google Scholar 

  • Fako V, Wu X, Pflug B, Liu YJ, Zhang JT (2015) Repositioning proton pump inhibitors as anti-cancer drugs by targeting the thioesterase domain of human fatty acid synthase. J Med Chem 58(2):778–784

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Flavin R, Peluso S, Nguyen PL, Loda M (2010) Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol 6(4):551–562

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Francipane MG, Lagasse E (2014) mTOR pathway in colorectal cancer: an update. Oncotarget 5(1):49–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Gago G, Diacovich L, Arabolaza A, Tsai SC, Gramajo H (2011) Fatty acid biosynthesis in actinomycetes. FEMS Microbiol Rev 35(3):475–497

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gansler TS, Hardman W 3rd, Hunt DA, Schaffel S, Hennigar RA (1997) Increased expression of fatty acid synthase (OA-519) in ovarian neoplasms predicts shorter survival. Hum Pathol 28(6):686–692

    Article  PubMed  CAS  Google Scholar 

  • Garrido-Sanchez L, Vendrell J, Fernandez-Garcia D, Ceperuelo-Mallafre V, Chacon MR, Ocana-Wilhelmi L et al (2012) De novo lipogenesis in adipose tissue is associated with course of morbid obesity after bariatric surgery. PLoS One 7(2):e31280

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis. Nat Rev Cancer 4(11):891–899

    Article  PubMed  CAS  Google Scholar 

  • Grube S, Dunisch P, Freitag D, Klausnitzer M, Sakr Y, Walter J et al (2014a) The mTOR inhibitor rapamycin synergizes with a fatty acid synthase inhibitor to induce cytotoxicity in ER/HER2-positive breast cancer cells. PLoS One 9(5):e97697

    Article  Google Scholar 

  • Grube S, Dünisch P, Freitag D, Klausnitzer M, Sakr Y, Walter J et al (2014b) Overexpression of fatty acid synthase in human gliomas correlates with the WHO tumor grade and inhibition with Orlistat reduces cell viability and triggers apoptosis. J Neurooncol 118(2):277–287

    Article  PubMed  CAS  Google Scholar 

  • Hadad SM, Hardie DG (2014) Appleyard V, Thompson AM. Effects of metformin on breast cancer cell proliferation, the AMPK pathway and the cell cycle. Clin Transl Oncol 16(8):746–752

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  CAS  Google Scholar 

  • Hassan B, Akcakanat A, Holder AM, Meric-Bernstam F (2013) Targeting the PI3-kinase/Akt/mTOR signaling pathway. Surg Oncol Clin N Am 22(4):641–664

    Article  PubMed  Google Scholar 

  • Hilvo M, Denkert C, Lehtinen L, Muller B, Brockmoller S, Seppanen-Laakso T et al (2011) Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res 71(9):3236–3245

    Article  PubMed  CAS  Google Scholar 

  • Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A et al (2012) The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485(7396):55–61

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huang P, Zhu S, Lu S, Dai Z, Jin Y (2000) An experimental study on cerulenin induced apoptosis of human colonic cancer cells. Zhonghua Bing Li Xue Za Zhi 29(2):115–118

    PubMed  CAS  Google Scholar 

  • Innocenzi D, Alò PL, Balzani A, Sebastiani V, Silipo V, La Torre G et al (2003) Fatty acid synthase expression in melanoma. J Cutan Pathol 30(1):23–28

    Article  PubMed  CAS  Google Scholar 

  • Janku F, Tsimberidou AM, Garrido-Laguna I, Wang X, Luthra R, Hong DS et al (2011) PIK3CA mutations in patients with advanced cancers treated with PI3K/Akt/mTOR axis inhibitors. Mol Cancer Ther 10(3):558–565

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jeong NY, Lee JS, Yoo KS, Oh S, Choe E, Lee HJ et al (2013) Fatty acid synthase inhibitor cerulenin inhibits topoisomerase I catalytic activity and augments SN-38-induced apoptosis. Apoptosis 18(2):226–237

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13(6):472–482

    Article  PubMed  CAS  Google Scholar 

  • Kuhajda FP (2000) Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 16(3):202–208

    Article  PubMed  CAS  Google Scholar 

  • Kuhajda FP, Jenner K, Wood FD, Hennigar RA, Jacobs LB, Dick JD et al (1994) Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc Natl Acad Sci USA 91(14):6379–6383

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kusakabe T, Nashimoto A, Honma K, Suzuki T (2002) Fatty acid synthase is highly expressed in carcinoma, adenoma and in regenerative epithelium and intestinal metaplasia of the stomach. Histopathology 40(1):71–79

    Article  PubMed  CAS  Google Scholar 

  • Li J, Kim SG, Blenis J (2014) Rapamycin: one drug, many effects. Cell Metab 19(3):373–379

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Linehan WM, Rouault TA (2013) Molecular pathways: fumarate hydratase-deficient kidney cancer–targeting the Warburg effect in cancer. Clin Cancer Res 19(13):3345–3352

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  • Long XH, Mao JH, Peng AF, Zhou Y, Huang SH, Liu ZL (2013) Tumor suppressive microRNA-424 inhibits osteosarcoma cell migration and invasion via targeting fatty acid synthase. Exp Ther Med 5(4):1048–1052

    PubMed  CAS  PubMed Central  Google Scholar 

  • Long QQ, Yi YX, Qiu J, Xu CJ, Huang PL (2014) Fatty acid synthase (FASN) levels in serum of colorectal cancer patients: correlation with clinical outcomes. Tumour Biol 35(4):3855–3859

    Article  PubMed  CAS  Google Scholar 

  • LoPiccolo J, Blumenthal GM, Bernstein WB, Dennis PA (2008) Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updates 11(1–2):32–50

    Article  CAS  Google Scholar 

  • Mashima T, Seimiya H, Tsuruo T (2009) De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br J Cancer 100(9):1369–1372

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7(10):763–777

    Article  PubMed  CAS  Google Scholar 

  • Migita T, Ruiz S, Fornari A, Fiorentino M, Priolo C, Zadra G et al (2009) Fatty acid synthase: a metabolic enzyme and candidate oncogene in prostate cancer. J Natl Cancer Inst 101(7):519–532

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Milgraum LZ, Witters LA, Pasternack GR, Kuhajda FP (1997) Enzymes of the fatty acid synthesis pathway are highly expressed in in situ breast carcinoma. Clin Cancer Res 3(11):2115–2120

    PubMed  CAS  Google Scholar 

  • Nosho K, Kawasaki T, Ohnishi M, Suemoto Y, Kirkner GJ, Zepf D et al (2008) PIK3CA mutation in colorectal cancer: relationship with genetic and epigenetic alterations. Neoplasia 10(6):534–541

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pelicano H, Martin DS, Xu RH, Huang P (2006a) Glycolysis inhibition for anticancer treatment. Oncogene 25(34):4633–4646

    Article  PubMed  CAS  Google Scholar 

  • Pelicano H, Xu RH, Du M, Feng L, Sasaki R, Carew JS et al (2006b) Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J Cell Biol 175(6):913–923

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Piyathilake CJ, Frost AR, Manne U, Bell WC, Weiss H, Heimburger DC et al (2000) The expression of fatty acid synthase (FASE) is an early event in the development and progression of squamous cell carcinoma of the lung. Hum Pathol 31(9):1068–1073

    Article  PubMed  CAS  Google Scholar 

  • Pizer ES, Chrest FJ, DiGiuseppe JA, Han WF (1998) Pharmacological inhibitors of mammalian fatty acid synthase suppress DNA replication and induce apoptosis in tumor cell lines. Cancer Res 58(20):4611–4615

    PubMed  CAS  Google Scholar 

  • Pouyssegur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441(7092):437–443

    Article  PubMed  CAS  Google Scholar 

  • Rashid A, Pizer ES, Moga M, Milgraum LZ, Zahurak M, Pasternack GR et al (1997) Elevated expression of fatty acid synthase and fatty acid synthetic activity in colorectal neoplasia. Am J Pathol 150(1):201–208

    PubMed  CAS  PubMed Central  Google Scholar 

  • Santolla MF, Lappano R, De Marco P, Pupo M, Vivacqua A, Sisci D et al (2012) G protein-coupled estrogen receptor mediates the up-regulation of fatty acid synthase induced by 17beta-estradiol in cancer cells and cancer-associated fibroblasts. J Biol Chem 287(52):43234–43245

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schulze A, Harris AL (2012) How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491(7424):364–373

    Article  PubMed  CAS  Google Scholar 

  • Sebastiani V, Visca P, Botti C, Santeusanio G, Galati GM, Piccini V et al (2004) Fatty acid synthase is a marker of increased risk of recurrence in endometrial carcinoma. Gynecol Oncol 92(1):101–105

    Article  PubMed  CAS  Google Scholar 

  • Shiragami R, Murata S, Kosugi C, Tezuka T, Yamazaki M, Hirano A et al (2013) Enhanced antitumor activity of cerulenin combined with oxaliplatin in human colon cancer cells. Int J Oncol 43(2):431–438

    PubMed  CAS  Google Scholar 

  • Shurbaji MS, Kalbfleisch JH, Thurmond TS (1996) Immunohistochemical detection of a fatty acid synthase (OA-519) as a predictor of progression of prostate cancer. Hum Pathol 27(9):917–921

    Article  PubMed  CAS  Google Scholar 

  • Suva ML, Riggi N, Bernstein BE (2013) Epigenetic reprogramming in cancer. Science 339(6127):1567–1570

    Article  PubMed  CAS  Google Scholar 

  • Swierczynski J, Hebanowska A, Sledzinski T (2014) Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World J Gastroenterol 20(9):2279–2303

    Article  PubMed  PubMed Central  Google Scholar 

  • Swinnen JV, Roskams T, Joniau S, Van Poppel H, Oyen R, Baert L et al (2002) Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer. Int J Cancer 98(1):19–22

    Article  PubMed  CAS  Google Scholar 

  • Thupari JN, Pinn ML, Kuhajda FP (2001) Fatty acid synthase inhibition in human breast cancer cells leads to malonyl-CoA-induced inhibition of fatty acid oxidation and cytotoxicity[J]. Biochem Biophys Res Commun 285(2):217–223

    Article  PubMed  CAS  Google Scholar 

  • Vander HMG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033

    Article  Google Scholar 

  • Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501

    Article  PubMed  CAS  Google Scholar 

  • Wang HQ, Altomare DA, Skele KL, Poulikakos PI, Kuhajda FP, Di Cristofano A et al (2005) Positive feedback regulation between AKT activation and fatty acid synthase expression in ovarian carcinoma cells. Oncogene 24(22):3574–3582

    Article  PubMed  CAS  Google Scholar 

  • Warburg O (1956) On respiratory impairment in cancer cells. Science 124(3215):269–270

    PubMed  CAS  Google Scholar 

  • Ward C, Langdon SP, Mullen P, Harris AL, Harrison DJ, Supuran CT et al (2013) New strategies for targeting the hypoxic tumour microenvironment in breast cancer. Cancer Treat Rev 39(2):171–179

    Article  PubMed  CAS  Google Scholar 

  • Weiss L, Hoffmann GE, Schreiber R, Andres H, Fuchs E, Körber E et al (1986) Fatty-acid biosynthesis in man, a pathway of minor importance. Purification, optimal assay conditions, and organ distribution of fatty-acid synthase. Biol Chem Hoppe Seyler 367(9):905–912

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Qin L, Fako V, Zhang JT (2014) Molecular mechanisms of fatty acid synthase (FASN)-mediated resistance to anti-cancer treatments. Adv Biol Regul 54:214–221

    Article  PubMed  CAS  Google Scholar 

  • Yap TA, Garrett MD, Walton MI, Raynaud F, de Bono JS, Workman P (2008) Targeting the PI3K–AKT–mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol 8(4):393–412

    Article  PubMed  CAS  Google Scholar 

  • Zhan Y, Ginanni N, Tota MR, Wu M, Bays NW, Richon VM et al (2008) Control of cell growth and survival by enzymes of the fatty acid synthesis pathway in HCT-116 colon cancer cells. Clin Cancer Res 14(18):5735–5742

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Simpson PJ, McFadden JM, Townsend CA, Medghalchi SM, Vadlamudi A et al (2003) Fatty acid synthase inhibition triggers apoptosis during S phase in human cancer cells. Cancer Res 63(21):7330–7337

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the research grants from the National Natural Science Foundation of China (81150028); the Natural Science Foundation of Jiangsu Province, China (BK2012749); Research Fund for the Doctoral Program of Higher Education of China (20120092110065).

Conflict of interest

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peilin Huang.

Additional information

Ligong Chang and Peng Wu have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, L., Wu, P., Senthilkumar, R. et al. Loss of fatty acid synthase suppresses the malignant phenotype of colorectal cancer cells by down-regulating energy metabolism and mTOR signaling pathway. J Cancer Res Clin Oncol 142, 59–72 (2016). https://doi.org/10.1007/s00432-015-2000-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-015-2000-8

Keywords

Navigation