, Volume 133, Issue 11, pp 875-893
Date: 02 Aug 2007

Predictive value of multidrug resistance proteins and cellular drug resistance in childhood relapsed acute lymphoblastic leukemia

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access



Cellular resistance in childhood acute leukemias might be related to profile and function of multidrug resistance proteins and apoptosis regulating proteins. The aims of the study were: (1) analysis of expression of MRP1, PGP1, LRP, BCL-2 and p53 proteins; (2) correlation with ex vivo drug resistance, and (3) analysis of their prognostic impact on clinical outcome in childhood acute lymphoblastic (ALL) and acute myeloid (AML) leukemia.


Total number of 787 children diagnosed for initial ALL (n = 527), relapsed ALL (n = 104), initial AML (n = 133) and relapsed AML (n = 23) were included into the study. Mean follow-up period was 3.5 years. Drug resistance for up to 30 anticancer agents was performed by the MTT assay. Expression of all proteins was tested by flow cytometry.


Both initial AML and relapsed ALL samples showed higher drug resistance than initial ALL samples. No significant differences were found in drug resistance between initial and relapsed AML samples. The presence of multidrug resistance and apoptosis proteins had no impact on pDFS in iALL and iAML, however strong trend towards adverse prognostic impact of MRP1, PGP and LRP on pDFS in rALL was observed. The same trend was observed for each of analyzed co-expressions of tested multidrug resistance proteins.


The phenomenon of cellular drug resistance in childhood acute leukemias is multifactorial and plays an important role in response to therapy. Expression of MRP1, PGP and LRP proteins, as well as their co-expression play possible role in childhood relapsed ALL.