Original Paper

European Journal of Pediatrics

, Volume 168, Issue 11, pp 1355-1363

First online:

Open Access This content is freely available online to anyone, anywhere at any time.

Fabry disease in children and the effects of enzyme replacement treatment

  • Guillem Pintos-MorellAffiliated withDepartment of Pediatrics, University Hospital “Germans Trias i Pujol” Badalona, Universitat Autònoma de Barcelona Email author 
  • , Michael BeckAffiliated withUniversity Children’s Hospital


Fabry disease is a rare, X-linked inborn error of glycosphingolipid catabolism caused by a deficiency in the activity of the lysosomal enzyme, α-galactosidase A. In affected patients, the enzyme substrate, globotriaosylceramide (Gb3), accumulates in cells of various tissues and organs. Lysosomal accumulation of Gb3 begins in utero, and signs and symptoms of Fabry disease emerge in childhood and adolescence. The earliest presenting symptoms are typically neuropathic pain and gastrointestinal problems, which can have a substantial impact on health-related quality of life. Life-threatening major organ involvement is rare in young patients, but signs of kidney dysfunction (e.g., proteinuria), left ventricular hypertrophy, and stroke have been reported in children. There are two enzyme preparations for therapy: agalsidase alfa and beta. In two clinical trials of enzyme replacement therapy (ERT) with agalsidase alfa, including 37 children, boys demonstrated reductions in plasma Gb3 levels, and both boys and girls reported reductions in neuropathic pain and in the use of neuropathic pain medications. Heart rate variability, which is reduced in boys with Fabry disease, was statistically significantly improved with 6 months of agalsidase alfa treatment. In a single clinical study of agalsidase beta in children (n =16), skin Gb3 deposits and plasma Gb3 levels were reduced in boys. Differences exist in the administration and the safety profile of these two enzyme formulations. Follow-up of these cohorts and additional studies will be necessary to fully evaluate long-term efficacy of ERT in children with Fabry disease.


Lysosomal storage disease Fabry disease Enzyme replacement therapy Children Genetic disorder