Skip to main content

Advertisement

Log in

Global versus tract-specific components of cerebral white matter integrity: relation to adult age and perceptual-motor speed

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Although age-related differences in white matter have been well documented, the degree to which regional, tract-specific effects can be distinguished from global, brain-general effects is not yet clear. Similarly, the manner in which global and regional differences in white matter integrity contribute to age-related differences in cognition has not been well established. To address these issues, we analyzed diffusion tensor imaging measures from 52 younger adults (18–28) and 64 older adults (60–85). We conducted principal component analysis on each diffusion measure, using data from eight individual tracts. Two components were observed for fractional anisotropy: the first comprised high loadings from the superior longitudinal fasciculi and corticospinal tracts, and the second comprised high loadings from the optic radiations. In contrast, variation in axial, radial, and mean diffusivities yielded a single-component solution in each case, with high loadings from most or all tracts. For fractional anisotropy, the complementary results of multiple components and variability in component loadings across tracts suggest regional variation. However, for the diffusivity indices, the single component with high loadings from most or all of the tracts suggests primarily global, brain-general variation. Further analyses indicated that age was a significant mediator of the relation between each component and perceptual-motor speed. These data suggest that individual differences in white matter integrity and their relation to age-related differences in perceptual-motor speed represent influences that are beyond the level of individual tracts, but the extent to which regional or global effects predominate may differ between anisotropy and diffusivity measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AC-PC:

Anterior commissure–posterior commissure

AD:

Axial diffusivity

CST:

Corticospinal tract

DTI:

Diffusion tensor imaging

DWI:

Diffusion-weighted image

fSPGR:

Fast spoiled gradient-echo imaging

FA:

Fractional anisotropy

FMRIB:

Functional MRI of the brain

FOV:

Field of view

ICA:

Independent component analysis

MD:

Mean diffusivity

MNI:

Montreal Neurological Institute

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

OR:

Optic radiations

PCA:

Principal component analysis

RD:

Radial diffusivity

RF:

Radio frequency

ROI:

Region of interest

RT:

Reaction time

SFNR:

Signal fluctuation to noise ratio

SLF:

Superior longitudinal fasciculus

SNR:

Signal to noise ratio

TE:

Echo time

TR:

Repetition time

WAIS:

Wechsler Adult Intelligence Scale

References

  • Abdi H, Williams LJ (2010) Principal component analysis. WIREs Comput Stat 2(4):433–459

    Article  Google Scholar 

  • Baron RM, Kenny DA (1986) The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol 51(6):1173–1182

    Article  CAS  PubMed  Google Scholar 

  • Bartolomeo P, Thiebaut de Schotten M, Doricchi F (2007) Left unilateral neglect as a disconnection syndrome. Cereb Cortex 17(11):2479–2490. doi:10.1093/cercor/bhl181

    Article  PubMed  Google Scholar 

  • Bartzokis G, Sultzer D, Lu PH, Nuechterlein KH, Mintz J, Cummings JL (2004) Heterogeneous age-related breakdown of white matter structural integrity: implications for cortical “disconnection” in aging and Alzheimer’s disease. Neurobiol Aging 25(7):843–851. doi:10.1016/j.neurobiolaging.2003.09.005

    Article  CAS  PubMed  Google Scholar 

  • Basser PJ (1995) Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 8(7–8):333–344

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15(7–8):435–455. doi:10.1002/nbm.782

    Article  PubMed  Google Scholar 

  • Bennett IJ, Madden DJ (2013) Disconnected aging: cerebral white matter integrity and age-related differences in cognition. Neuroscience. doi:10.1016/j.neuroscience.2013.11.026

    Google Scholar 

  • Bennett IJ, Madden DJ, Vaidya CJ, Howard DV, Howard JH Jr (2010) Age-related differences in multiple measures of white matter integrity: a diffusion tensor imaging study of healthy aging. Hum Brain Mapp 31(3):378–390. doi:10.1002/hbm.20872

    PubMed Central  PubMed  Google Scholar 

  • Bennett IJ, Madden DJ, Vaidya CJ, Howard JH Jr, Howard DV (2011) White matter integrity correlates of implicit sequence learning in healthy aging. Neurobiol Aging 32(12):2317. doi:10.1016/j.neurobiolaging.2010.03.017 (e2311–2312)

    Article  PubMed Central  PubMed  Google Scholar 

  • Bennett IJ, Motes MA, Rao NK, Rypma B (2012) White matter tract integrity predicts visual search performance in young and older adults. Neurobiol Aging 33(2):433. doi:10.1016/j.neurobiolaging.2011.02.001 (e421–431)

    Article  PubMed Central  PubMed  Google Scholar 

  • Borghesani PR, Madhyastha TM, Aylward EH, Reiter MA, Swarny BR, Warner Schaie K, Willis SL (2013) The association between higher order abilities, processing speed, and age are variably mediated by white matter integrity during typical aging. Neuropsychologia 51(8):1435–1444. doi:10.1016/j.neuropsychologia.2013.03.005

    Article  PubMed  Google Scholar 

  • Braffman BH, Zimmerman RA, Trojanowski JQ, Gonatas NK, Hickey WF, Schlaepfer WW (1988a) Brain MR: pathologic correlation with gross and histopathology. 1. Lacunar infarction and Virchow-Robin spaces. AJR Am J Roentgenol 151(3):551–558. doi:10.2214/ajr.151.3.551

    Article  CAS  PubMed  Google Scholar 

  • Braffman BH, Zimmerman RA, Trojanowski JQ, Gonatas NK, Hickey WF, Schlaepfer WW (1988b) Brain MR: pathologic correlation with gross and histopathology. 2. Hyperintense white-matter foci in the elderly. AJR Am J Roentgenol 151(3):559–566. doi:10.2214/ajr.151.3.559

    Article  CAS  PubMed  Google Scholar 

  • Brickman AM, Meier IB, Korgaonkar MS, Provenzano FA, Grieve SM, Siedlecki KL, Wasserman BT, Williams LM, Zimmerman ME (2012) Testing the white matter retrogenesis hypothesis of cognitive aging. Neurobiol Aging 33(8):1699–1715. doi:10.1016/j.neurobiolaging.2011.06.001

    Article  PubMed Central  PubMed  Google Scholar 

  • Bucur B, Madden DJ, Spaniol J, Provenzale JM, Cabeza R, White LE, Huettel SA (2008) Age-related slowing of memory retrieval: contributions of perceptual speed and cerebral white matter integrity. Neurobiol Aging 29(7):1070–1079

    Article  PubMed Central  PubMed  Google Scholar 

  • Budde MD, Kim JH, Liang HF, Schmidt RE, Russell JH, Cross AH, Song SK (2007) Toward accurate diagnosis of white matter pathology using diffusion tensor imaging. Magn Reson Med 57(4):688–695. doi:10.1002/mrm.21200

    Article  PubMed  Google Scholar 

  • Buja A, Eyuboglu N (1992) Remarks on parallel analysis. Multivar Behav Res 27:509–540

    Article  Google Scholar 

  • Burke DM, Mackay DG (1997) Memory, language, and ageing. Philos Trans R Soc Lond 352(1363):1845–1856. doi:10.1098/rstb.1997.0170

    Article  CAS  Google Scholar 

  • Burzynska AZ, Preuschhof C, Backman L, Nyberg L, Li SC, Lindenberger U, Heekeren HR (2010) Age-related differences in white matter microstructure: region-specific patterns of diffusivity. Neuroimage 49(3):2104–2112. doi:10.1016/j.neuroimage.2009.09.041

    Article  CAS  PubMed  Google Scholar 

  • Carmichael O, Lockhart S (2012) The role of diffusion tensor imaging in the study of cognitive aging. Curr Top Behav Neurosci 11:289–320. doi:10.1007/7854_2011_176

    Article  PubMed  Google Scholar 

  • Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17(1):77–94

    Article  PubMed  Google Scholar 

  • Cattell RB (1966) The scree test for the number of factors. Multivar Behav Res 1(2):245–276. doi:10.1207/s15327906mbr0102_10

    Article  Google Scholar 

  • Charlton RA, Barrick TR, McIntyre DJ, Shen Y, O’Sullivan M, Howe FA, Clark CA, Morris RG, Markus HS (2006) White matter damage on diffusion tensor imaging correlates with age-related cognitive decline. Neurology 66(2):217–222. doi:10.1212/01.wnl.0000194256.15247.83

    Article  CAS  PubMed  Google Scholar 

  • Christiansen MH, MacDonald MC (2009) A usage-based approach to recursion in sentence processing. Lang Learn 59:126–161

    Article  Google Scholar 

  • Davis SW, Dennis NA, Buchler NG, White LE, Madden DJ, Cabeza R (2009) Assessing the effects of age on long white matter tracts using diffusion tensor tractography. Neuroimage 46(2):530–541

    Article  PubMed Central  PubMed  Google Scholar 

  • de Groot JC, de Leeuw FE, Oudkerk M, Hofman A, Jolles J, Breteler MM (2001) Cerebral white matter lesions and subjective cognitive dysfunction: the Rotterdam scan study. Neurology 56(11):1539–1545

    Article  PubMed  Google Scholar 

  • DeCarli C, Massaro J, Harvey D, Hald J, Tullberg M, Au R, Beiser A, D’Agostino R, Wolf PA (2005) Measures of brain morphology and infarction in the framingham heart study: establishing what is normal. Neurobiol Aging 26(4):491–510. doi:10.1016/j.neurobiolaging.2004.05.004

    Article  PubMed  Google Scholar 

  • Filley CM (2005) White matter and behavioral neurology. Ann N Y Acad Sci 1064:162–183. doi:10.1196/annals.1340.028

    Article  PubMed  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  CAS  PubMed  Google Scholar 

  • Friedman L, Glover GH (2006) Reducing interscanner variability of activation in a multicenter fMRI study: controlling for signal-to-fluctuation-noise-ratio (SFNR) differences. Neuroimage 33(2):471–481. doi:10.1016/j.neuroimage.2006.07.012

    Article  PubMed  Google Scholar 

  • Gold BT, Powell DK, Xuan L, Jicha GA, Smith CD (2010) Age-related slowing of task switching is associated with decreased integrity of frontoparietal white matter. Neurobiol Aging 31(3):512–522

    Article  PubMed Central  PubMed  Google Scholar 

  • Gunning-Dixon FM, Brickman AM, Cheng JC, Alexopoulos GS (2009) Aging of cerebral white matter: a review of MRI findings. Int J Geriatr Psychiatry 24(2):109–117

    Article  PubMed Central  PubMed  Google Scholar 

  • Hayes AF (2009) Beyond Baron and Kenny: statistical mediation analysis in the new millenium. Commun Monogr 76(4):408–420

    Article  Google Scholar 

  • Hyvarinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4–5):411–430

    Article  CAS  PubMed  Google Scholar 

  • Jones DK (2004) The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med 51(4):807–815. doi:10.1002/mrm.20033

    Article  PubMed  Google Scholar 

  • Jones DK (2008) Studying connections in the living human brain with diffusion MRI. Cortex 44(8):936–952

    Article  PubMed  Google Scholar 

  • Jones DK, Knosche TR, Turner R (2012) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage. doi:10.1016/j.neuroimage.2012.06.081

    Google Scholar 

  • Judd CM, Kenny DA (1981) Process analysis: estimating mediation in treatment evaluations. Eval Rev 5(5):602–619. doi:10.1177/0193841X8100500502

    Article  Google Scholar 

  • Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141–151. doi:10.1177/001316446002000116

    Article  Google Scholar 

  • Kennedy KM, Raz N (2009) Aging white matter and cognition: differential effects of regional variations in diffusion properties on memory, executive functions, and speed. Neuropsychologia 47(3):916–927. doi:10.1016/j.neuropsychologia.2009.01.001

    Article  PubMed Central  PubMed  Google Scholar 

  • Klawiter EC, Schmidt RE, Trinkaus K, Liang HF, Budde MD, Naismith RT, Song SK, Cross AH, Benzinger TL (2011) Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords. Neuroimage 55(4):1454–1460. doi:10.1016/j.neuroimage.2011.01.007

    Article  PubMed Central  PubMed  Google Scholar 

  • Kochunov P, Williamson DE, Lancaster J, Fox P, Cornell J, Blangero J, Glahn DC (2012) Fractional anisotropy of water diffusion in cerebral white matter across the lifespan. Neurobiol Aging 33(1):9–20. doi:10.1016/j.neurobiolaging.2010.01.014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kramer AF, Madden DJ (2008) Attention. In: Craik FIM, Salthouse TA (eds) The handbook of aging and cognition, 3rd edn. Psychology Press, New York, pp 189–249

    Google Scholar 

  • Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4(6):469–480

    Article  PubMed  CAS  Google Scholar 

  • Lebel C, Gee M, Camicioli R, Wieler M, Martin W, Beaulieu C (2012) Diffusion tensor imaging of white matter tract evolution over the lifespan. Neuroimage 60(1):340–352. doi:10.1016/j.neuroimage.2011.11.094

    Article  CAS  PubMed  Google Scholar 

  • Li YO, Yang FG, Nguyen CT, Cooper SR, LaHue SC, Venugopal S, Mukherjee P (2012) Independent component analysis of DTI reveals multivariate microstructural correlations of white matter in the human brain. Hum Brain Mapp 33(6):1431–1451. doi:10.1002/hbm.21292

    Article  PubMed  Google Scholar 

  • Lindenberger U, von Oertzen T, Ghisletta P, Hertzog C (2011) Cross-sectional age variance extraction: what’s change got to do with it? Psychol Aging 26(1):34–47. doi:10.1037/a0020525

    Article  PubMed  Google Scholar 

  • Lövdén M, Laukka EJ, Rieckmann A, Kalpouzos G, Li TQ, Jonsson T, Wahlund LO, Fratiglioni L, Backman L (2012) The dimensionality of between-person differences in white matter microstructure in old age. Hum Brain Mapp. doi:10.1002/hbm.21518

    Google Scholar 

  • Lu PH, Lee GJ, Tishler TA, Meghpara M, Thompson PM, Bartzokis G (2013) Myelin breakdown mediates age-related slowing in cognitive processing speed in healthy elderly men. Brain Cogn 81(1):131–138. doi:10.1016/j.bandc.2012.09.006

    Article  PubMed  Google Scholar 

  • Madden DJ, Bennett IJ, Song AW (2009a) Cerebral white matter integrity and cognitive aging: contributions from diffusion tensor imaging. Neuropsychol Rev 19(4):415–435

    Article  PubMed Central  PubMed  Google Scholar 

  • Madden DJ, Spaniol J, Costello MC, Bucur B, White LE, Cabeza R, Davis SW, Dennis NA, Provenzale JM, Huettel SA (2009b) Cerebral white matter integrity mediates adult age differences in cognitive performance. J Cogn Neurosci 21(2):289–302

    Article  PubMed Central  PubMed  Google Scholar 

  • Madden DJ, Bennett IJ, Burzynska A, Potter GG, Chen NK, Song AW (2012) Diffusion tensor imaging of cerebral white matter integrity in cognitive aging. Biochim Biophys Acta 1822(3):386–400. doi:10.1016/j.bbadis.2011.08.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maxwell SE, Cole DA (2007) Bias in cross-sectional analyses of longitudinal mediation. Psychol Methods 12(1):23–44. doi:10.1037/1082-989X.12.1.23

    Article  PubMed  Google Scholar 

  • McIntosh AR (2000) Towards a network theory of cognition. Neural Netw 13(8–9):861–870

    Article  CAS  PubMed  Google Scholar 

  • Meier-Ruge W, Ulrich J, Bruhlmann M, Meier E (1992) Age-related white matter atrophy in the human brain. Ann N Y Acad Sci 673:260–269

    Article  CAS  PubMed  Google Scholar 

  • Mesulam MM (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28(5):597–613. doi:10.1002/ana.410280502

    Article  CAS  PubMed  Google Scholar 

  • Miller KL, Stagg CJ, Douaud G, Jbabdi S, Smith SM, Behrens TE, Jenkinson M, Chance SA, Esiri MM, Voets NL, Jenkinson N, Aziz TZ, Turner M, Johansen-Berg H, McNab JA (2011) Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner. Neuroimage 57(1):167–181. doi:10.1016/j.neuroimage.2011.03.070

    Article  PubMed Central  PubMed  Google Scholar 

  • Mori S (2007) Introduction to diffusion tensor imaging. Elsevier, Amsterdam

    Google Scholar 

  • Nusbaum AO, Tang CY, Buchsbaum MS, Wei TC, Atlas SW (2001) Regional and global changes in cerebral diffusion with normal aging. AJNR Am J Neuroradiol 22(1):136–142

    CAS  PubMed  Google Scholar 

  • Oishi K, Faria AV, Van Zijl PCM, Mori S (2011) MRI atlas of human white matter, 2nd edn. Academic Press, New York

    Google Scholar 

  • Park DC, Lautenschlager G, Hedden T, Davidson NS, Smith AD, Smith PK (2002) Models of visuospatial and verbal memory across the adult life span. Psychol Aging 17(2):299–320

    Article  PubMed  Google Scholar 

  • Penke L, Munoz Maniega S, Murray C, Gow AJ, Hernandez MC, Clayden JD, Starr JM, Wardlaw JM, Bastin ME, Deary IJ (2010) A general factor of brain white matter integrity predicts information processing speed in healthy older people. J Neurosci 30(22):7569–7574. doi:10.1523/JNEUROSCI.1553-10.2010

    Article  CAS  PubMed  Google Scholar 

  • Perry ME, McDonald CR, Hagler DJ Jr, Gharapetian L, Kuperman JM, Koyama AK, Dale AM, McEvoy LK (2009) White matter tracts associated with set-shifting in healthy aging. Neuropsychologia 47(13):2835–2842

    Article  PubMed Central  PubMed  Google Scholar 

  • Polders DL, Leemans A, Hendrikse J, Donahue MJ, Luijten PR, Hoogduin JM (2011) Signal to noise ratio and uncertainty in diffusion tensor imaging at 1.5, 3.0, and 7.0 Tesla. J Magn Reson Imaging 33(6):1456–1463. doi:10.1002/jmri.22554

    Article  PubMed  Google Scholar 

  • Preacher KJ, Hayes AF (2004) SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav Res Methods Instrum Comput 36(4):717–731

    Article  PubMed  Google Scholar 

  • Preacher KJ, Kelley K (2011) Effect size measures for mediation models: quantitative strategies for communicating indirect effects. Psychol Methods 16(2):93–115. doi:10.1037/a0022658

    Article  PubMed  Google Scholar 

  • Raz N, Rodrigue KM (2006) Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev 30(6):730–748. doi:10.1016/j.neubiorev.2006.07.001

    Article  PubMed  Google Scholar 

  • Reischauer C, Staempfli P, Jaermann T, Boesiger P (2009) Construction of a temperature-controlled diffusion phantom for quality control of diffusion measurements. J Magn Reson Imaging 29(3):692–698. doi:10.1002/jmri.21665

    Article  PubMed  Google Scholar 

  • Rovaris M, Iannucci G, Cercignani M, Sormani MP, De Stefano N, Gerevini S, Comi G, Filippi M (2003) Age-related changes in conventional, magnetization transfer, and diffusion-tensor MR imaging findings: study with whole-brain tissue histogram analysis. Radiology 227(3):731–738. doi:10.1148/radiol.2273020721

    Article  PubMed  Google Scholar 

  • Salami A, Eriksson J, Nilsson LG, Nyberg L (2012) Age-related white matter microstructural differences partly mediate age-related decline in processing speed but not cognition. Biochim Biophys Acta 1822(3):408–415. doi:10.1016/j.bbadis.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  • Salat DH, Tuch DS, Greve DN, van der Kouwe AJ, Hevelone ND, Zaleta AK, Rosen BR, Fischl B, Corkin S, Rosas HD, Dale AM (2005) Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol Aging 26(8):1215–1227

    Article  CAS  PubMed  Google Scholar 

  • Salthouse TA (1991a) Mediation of adult age differences in cognition by reductions in working memory and speed of processing. Psychol Sci 2(3):179–183

    Article  Google Scholar 

  • Salthouse TA (1991b) Theoretical perspectives on cognitive aging. Erlbaum, Hillsdale

    Google Scholar 

  • Salthouse TA (1996) The processing-speed theory of adult age differences in cognition. Psychol Rev 103(3):403–428

    Article  CAS  PubMed  Google Scholar 

  • Salthouse TA (2000) Aging and measures of processing speed. Biol Psychol 54(1–3):35–54

    Article  CAS  PubMed  Google Scholar 

  • Salthouse TA (2011) Neuroanatomical substrates of age-related cognitive decline. Psychol Bull 137(5):753–784. doi:10.1037/a0023262

    Article  PubMed Central  PubMed  Google Scholar 

  • Salthouse TA, Madden DJ (2007) Information processing speed and aging. In: Deluca J, Kalmar J (eds) Information processing speed in clinical populations. Psychology Press, New York, pp 221–241

    Google Scholar 

  • Saur D, Kreher BW, Schnell S, Kummerer D, Kellmeyer P, Vry MS, Umarova R, Musso M, Glauche V, Abel S, Huber W, Rijntjes M, Hennig J, Weiller C (2008) Ventral and dorsal pathways for language. Proc Natl Acad Sci 105(46):18035–18040. doi:10.1073/pnas.0805234105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scheltens P, Barkhof F, Leys D, Wolters EC, Ravid R, Kamphorst W (1995) Histopathologic correlates of white matter changes on MRI in Alzheimer’s disease and normal aging. Neurology 45(5):883–888

    Article  CAS  PubMed  Google Scholar 

  • Schmahmann JD, Smith EE, Eichler FS, Filley CM (2008) Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann N Y Acad Sci 1142:266–309. doi:10.1196/annals.1444.017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155. doi:10.1002/hbm.10062

    Article  PubMed  Google Scholar 

  • Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219

    Article  PubMed  Google Scholar 

  • Sobel ME (1982) Asymptotic intervals for indirect effects in structural equations models. Sociol methodol: 290–312

  • Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17(3):1429–1436

    Article  PubMed  Google Scholar 

  • Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH (2003) Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20(3):1714–1722

    Article  PubMed  Google Scholar 

  • Stadlbauer A, Salomonowitz E, Strunk G, Hammen T, Ganslandt O (2008) Quantitative diffusion tensor fiber tracking of age-related changes in the limbic system. Eur Radiol 18(1):130–137. doi:10.1007/s00330-007-0733-8

    Article  PubMed  Google Scholar 

  • Stadlbauer A, Ganslandt O, Salomonowitz E, Buchfelder M, Hammen T, Bachmair J, Eberhardt K (2012) Magnetic resonance fiber density mapping of age-related white matter changes. Eur J Radiol 81(12):4005–4012. doi:10.1016/j.ejrad.2012.05.029

    Article  PubMed  Google Scholar 

  • Sullivan EV, Pfefferbaum A (2006) Diffusion tensor imaging and aging. Neurosci Biobehav Rev 30(6):749–761

    Article  PubMed  Google Scholar 

  • Sullivan EV, Pfefferbaum A (2011) Diffusion tensor imaging in aging and age-related neurodegenerative disorders. In: Jones DK (ed) Diffusion MRI: Theory, methods, and applications Oxford University Press, New York, pp 624–643

  • Sullivan EV, Adalsteinsson E, Pfefferbaum A (2006) Selective age-related degradation of anterior callosal fiber bundles quantified in vivo with fiber tracking. Cereb Cortex 16(7):1030–1039

    Article  PubMed  Google Scholar 

  • Sullivan EV, Zahr NM, Rohlfing T, Pfefferbaum A (2010) Fiber tracking functionally distinct components of the internal capsule. Neuropsychologia 48(14):4155–4163. doi:10.1016/j.neuropsychologia.2010.10.023

    Article  PubMed Central  PubMed  Google Scholar 

  • Taylor JL, Gandevia SC (2004) Noninvasive stimulation of the human corticospinal tract. J Appl Physiol 96(4):1496–1503. doi:10.1152/japplphysiol.01116.2003

    Article  CAS  PubMed  Google Scholar 

  • Toosy AT, Ciccarelli O, Parker GJ, Wheeler-Kingshott CA, Miller DH, Thompson AJ (2004) Characterizing function-structure relationships in the human visual system with functional MRI and diffusion tensor imaging. Neuroimage 21(4):1452–1463. doi:10.1016/j.neuroimage.2003.11.022

    Article  PubMed  Google Scholar 

  • Verhaeghen P, Cerella J (2002) Aging, executive control, and attention: a review of meta-analyses. Neurosci Biobehav Rev 26(7):849–857

    Article  PubMed  Google Scholar 

  • Voineskos AN, Rajji TK, Lobaugh NJ, Miranda D, Shenton ME, Kennedy JL, Pollock BG, Mulsant BH (2012) Age-related decline in white matter tract integrity and cognitive performance: a DTI tractography and structural equation modeling study. Neurobiol Aging 33(1):21–34. doi:10.1016/j.neurobiolaging.2010.02.009

    Article  PubMed Central  PubMed  Google Scholar 

  • Vollmar C, O’Muircheartaigh J, Barker GJ, Symms MR, Thompson P, Kumari V, Duncan JS, Richardson MP, Koepp MJ (2010) Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners. Neuroimage 51(4):1384–1394. doi:10.1016/j.neuroimage.2010.03.046

    Article  PubMed Central  PubMed  Google Scholar 

  • Wahl M, Li YO, Ng J, Lahue SC, Cooper SR, Sherr EH, Mukherjee P (2010) Microstructural correlations of white matter tracts in the human brain. Neuroimage 51(2):531–541. doi:10.1016/j.neuroimage.2010.02.072

    Article  PubMed Central  PubMed  Google Scholar 

  • Wechsler D (1981) Wechsler adult intelligence scale-revised. Psychological Corporation, New York

    Google Scholar 

  • Westlye LT, Walhovd KB, Dale AM, Bjornerud A, Due-Tonnessen P, Engvig A, Grydeland H, Tamnes CK, Ostby Y, Fjell AM (2010) Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry. Cereb Cortex 20(9):2055–2068. doi:10.1093/cercor/bhp280

    Article  PubMed  Google Scholar 

  • Wheeler-Kingshott CA, Cercignani M (2009) About “axial” and “radial” diffusivities. Magn Reson Med 61(5):1255–1260

    Article  PubMed  Google Scholar 

  • Zacks RT, Hasher L, Li KZH (2000) Human memory. In: Craik FIM, Salthouse TA (eds) The handbook of aging and cognition, 2nd edn. Erlbaum, Mahwah, pp 293–357

    Google Scholar 

  • Zahr NM, Rohlfing T, Pfefferbaum A, Sullivan EV (2009) Problem solving, working memory, and motor correlates of association and commissural fiber bundles in normal aging: a quantitative fiber tracking study. Neuroimage 44(3):1050–1062

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang N, Deng Z-S, Wang F, Wang X-Y (2009) The effect of different number of diffusion gradients on SNR of diffusion tensor-derived measurement maps. J Biomed Sci Eng 2:96–101

    Article  Google Scholar 

  • Zhu T, Hu R, Qiu X, Taylor M, Tso Y, Yiannoutsos C, Navia B, Mori S, Ekholm S, Schifitto G, Zhong J (2011) Quantification of accuracy and precision of multi-center DTI measurements: a diffusion phantom and human brain study. Neuroimage 56(3):1398–1411. doi:10.1016/j.neuroimage.2011.02.010

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants R01 AG034138 (MTD) and R01 AG039684 (DJM) from the National Institute on Aging. We thank Guy Potter, Ying-hui Chou, Emily L. Parks, David A. Hoagey, Sally Ann B. Cocjin, and Maxwell Horowitz for assistance. We also thank the staff and scientists at the Brain Imaging and Analysis Center, especially the center director, Allen W. Song, for their support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele T. Diaz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 70 kb)

Supplementary material 2 (DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, M.A., Diaz, M.T. & Madden, D.J. Global versus tract-specific components of cerebral white matter integrity: relation to adult age and perceptual-motor speed. Brain Struct Funct 220, 2705–2720 (2015). https://doi.org/10.1007/s00429-014-0822-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0822-9

Keywords

Navigation