Skip to main content
Log in

Shifted neuronal balance during stimulus–response integration in schizophrenia: an fMRI study

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Schizophrenia is characterized by marked deficits in executive and psychomotor functions, as demonstrated for goal-directed actions in the antisaccade task. Recent studies, however, suggest that this deficit represents only one manifestation of a general deficit in stimulus–response integration and volitional initiation of motor responses. We here used functional magnetic resonance imaging to investigate brain activation patterns during a manual stimulus–response compatibility task in 18 schizophrenic patients and 18 controls. We found that across groups incongruent vs. congruent responses recruited a bilateral network consisting of dorsal fronto-parietal circuits as well as bilateral anterior insula, dorsolateral prefrontal cortex (DLPFC) and the presupplementary motor area (preSMA). When testing for the main-effect across all conditions, patients showed significantly lower activation of the right DLPFC and, in turn, increased activation in a left hemispheric network including parietal and premotor areas as well as the preSMA. For incongruent responses patients showed significantly increased activation in a similar left hemispheric network, as well as additional activation in parietal and premotor regions in the right hemisphere. The present study reveals that hypoactivity in the right DLPFC in schizophrenic patients is accompanied by hyperactivity in several fronto-parietal regions associated with task execution. Impaired top-down control due to a dysfunctional DLPFC might thus be partly compensated by an up-regulation of task-relevant regions in schizophrenic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Addington J, Addington D, Gasbarre L (1997) Distractibility and symptoms in schizophrenia. J Psychiatry Neurosci 22:180–184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andersen RA (1997) Multimodal integration for the representation of space in the posterior parietal cortex. Philos Trans R Soc Lond B Biol Sci 352:1421–1428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andersen RA, Asanuma C, Essick G, Siegel RM (1990) Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J Comp Neurol 296:65–113

    Article  CAS  PubMed  Google Scholar 

  • Andreasen NC (1990) Positive and negative symptoms: historical and conceptual aspects. Mod Probl Pharmacopsychiatr 24:1–42

    CAS  Google Scholar 

  • Andreasen NC, Rezai K, Alliger R, Swayze VW, Flaum M, Kirchner P, Cohen G, O‘Leary DS (1992) Hypofrontality in neuroleptic-naive patients and in patients with chronic schizophrenia. Assessment with xenon 133 single-photon emission computed tomography and the Tower of London. Arch Gen Psychiatry 49:943–958

    Article  CAS  PubMed  Google Scholar 

  • Arce E, Leland DS, Miller DA, Simmons AN, Winternheimer KC, Paulus MP (2006) Individuals with schizophrenia present hypo- and hyperactivation during implicit cueing in an inhibitory task. Neuroimage 32(2):704–713

    Article  PubMed  Google Scholar 

  • Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–851

    Article  PubMed  Google Scholar 

  • Badre D, D‘Esposito M (2009) Is the rostro-caudal axis of the frontal lobe hierarchical? Nat Rev Neurosci 10:659–669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barch DM, Ceaser A (2012) Cognition in schizophrenia: core psychological and neural mechanisms. Trends Cogn Sci 16:27–34

    Article  PubMed  Google Scholar 

  • Barch DM, Carter CS, Braver TS, Sabb FW, MacDonald A III, Noll DC, Cohen JD (2001) Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia. Arch Gen Psychiatry 58:280–288

    Article  CAS  PubMed  Google Scholar 

  • Bates JF, Goldman-Rakic PS (1993) Prefrontal connections of medial motor areas in the rhesus monkey. J Comp Neurol 336:211–228

    Article  CAS  PubMed  Google Scholar 

  • Behrwind SD, Dafotakis M, Halfter S, Hobusch K, Berthold-Losleben M, Cieslik EC, Eickhoff SB (2011) Executive control in chronic schizophrenia: a perspective from manual stimulus-response compatibility task performance. Behav Brain Res 223(1):24–29

    Article  PubMed Central  PubMed  Google Scholar 

  • Bilder RM, Goldman RS, Robinson D, Reiter G, Bell L, Bates JA, Pappadopulos E, Willson DF, Alvir JM, Woerner MG, Geisler S, Kane JM, Lieberman JA (2000) Neuropsychology of first-episode schizophrenia: initial characterization and clinical correlates. Am J Psychiatry 157:549–559

    Article  CAS  PubMed  Google Scholar 

  • Bogerts B (2005) Bedeutung der Frontallappen für die Pathophysiologie schizophrener Erkrankungen. In: Förstl H (ed) Frontalhirn: Funktionen und Erkrankungen. Springer, Heidelberg, pp 213–231

    Chapter  Google Scholar 

  • Bowie CR, Harvey PD (2005) Cognition in schizophrenia: impairments, determinants, and functional importance. Psychiatr Clin North Am 28(613–33):626

    Google Scholar 

  • Braver TS, Barch DM, Cohen JD (1999) Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function. Biol Psychiatry 46:312–328

    Article  CAS  PubMed  Google Scholar 

  • Broerse A, Crawford TJ, den Boer JA (2001) Parsing cognition in schizophrenia using saccadic eye movements: a selective overview. Neuropsychologia 39:742–756

    Article  CAS  PubMed  Google Scholar 

  • Brownstein J, Krastoshevsky O, McCollum C, Kundamal S, Matthysse S, Holzman PS, Mendell NR, Levy DL (2003) Antisaccade performance is abnormal in schizophrenia patients but not in their biological relatives. Schizophr Res 63:13–25

    Article  PubMed  Google Scholar 

  • Calkins ME, Curtis CE, Iacono WG, Grove WM (2004) Antisaccade performance is impaired in medically and psychiatrically healthy biological relatives of schizophrenia patients. Schizophr Res 71:167–178

    Article  PubMed  Google Scholar 

  • Carter CS, Perlstein W, Ganguli R, Brar J, Mintun M, Cohen JD (1998) Functional hypofrontality and working memory dysfunction in schizophrenia. Am J Psychiatry 155:1285–1287

    Article  CAS  PubMed  Google Scholar 

  • Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33:430–448

    Article  PubMed  Google Scholar 

  • Caspers S, Eickhoff SB, Geyer S, Scheperjans F, Mohlberg H, Zilles K, Amunts K (2008) The human inferior parietal lobule in stereotaxic space. Brain Struct Funct 212:481–495

    Article  PubMed  Google Scholar 

  • Cieslik EC, Zilles K, Kurth F, Eickhoff SB (2010) Dissociating bottom-up and top-down processes in a manual stimulus–response compatibility task. J Neurophysiol 104:1472–1483

    Article  PubMed Central  PubMed  Google Scholar 

  • Cieslik EC, Zilles K, Grefkes G, Eickhoff SB (2011) Dynamic interactions in the fronto-parietal network during a manual stimulus–response compatibility task. Neuroimage 58(3):860–869

    Google Scholar 

  • Cieslik EC, Zilles K, Caspers S, Roski C, Kellermann TS, Jakobs O, Langner R, Laird AR, Fox PT, Eickhoff SB (2013) Is there “One” DLPFC in cognitive action control? evidence for heterogeneity from co-activation-based parcellation. Cereb Cortex 23(11):2677–2689

    Google Scholar 

  • Cisek P, Kalaska JF (2005) Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron 45:801–814

    Article  CAS  PubMed  Google Scholar 

  • Cohen JD, Servan-Schreiber D (1992) Context, cortex, and dopamine: a connectionist approach to behavior and biology in schizophrenia. Psychol Rev 99:45–77

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58:306–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Zubicaray GI, Andrew C, Zelaya FO, Williams SC, Dumanoir C (2000) Motor response suppression and the prepotent tendency to respond: a parametric fMRI study. Neuropsychologia 38:1280–1291

    Article  PubMed  Google Scholar 

  • Desmurget M, Sirigu A (2012) Conscious motor intention emerges in the inferior parietal lobule. Curr Opin Neurobiol 22:1004–1011

    Article  CAS  PubMed  Google Scholar 

  • Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes AL, Schlaggar BL, Petersen SE (2006) A core system for the implementation of task sets. Neuron 50:799–812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dreher JC, Trapp W, Banquet JP, Keil M, Günther W, Burnod Y (1999) Planning dysfunction in schizophrenia: impairment of potentials preceding fixed/free and single/sequence of self-initiated finger movements. Exp Brain Res 124:200–214

    Article  CAS  PubMed  Google Scholar 

  • Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Paus T, Caspers S, Grosbras MH, Evans AC, Zilles K, Amunts K (2007) Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage 36:511–521

    Article  PubMed  Google Scholar 

  • Everling S, Fischer B (1998) The antisaccade: a review of basic research and clinical studies. Neuropsychologia 36:885–899

    Article  CAS  PubMed  Google Scholar 

  • Fogassi L, Luppino G (2005) Motor functions of the parietal lobe. Curr Opin Neurobiol 15:626–631

    Article  CAS  PubMed  Google Scholar 

  • Frecska E, Symer C, White K, Piscani K, Kulcsar Z (2004) Perceptional and executive deficits of chronic schizophrenic patients in attentional and intentional tasks. Psychiatry Res 126:63–75

    Article  PubMed  Google Scholar 

  • Geyer S (2004) The microstructural border between the motor and the cognitive domain in the human cerebral cortex. Adv Anat Embryol Cell Biol 174:1–89

    Article  CAS  Google Scholar 

  • Glahn DC, Ragland JD, Abramoff A, Barrett J, Laird AR, Bearden CE, Velligan DI (2005) Beyond hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Hum Brain Mapp 25:60–69

    Article  PubMed  Google Scholar 

  • Goldman-Rakic PS (1994) Working memory dysfunction in schizophrenia. J Neuropsychiatry Clin Neurosci 6:348–357

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS, Selemon LD (1997) Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull 23:437–458

    Article  CAS  PubMed  Google Scholar 

  • Grafton ST, Hamilton AF (2007) Evidence for a distributed hierarchy of action representation in the brain. Hum Mov Sci 26:590–616

    Article  PubMed Central  PubMed  Google Scholar 

  • Grefkes C, Fink GR (2005) The functional organization of the intraparietal sulcus in humans and monkeys. J Anat 207:3–17

    Article  PubMed Central  PubMed  Google Scholar 

  • Haggard P (2008) Human volition: towards a neuroscience of will. Nat Rev Neurosci 9:934–946

    Article  CAS  PubMed  Google Scholar 

  • Hallett PE (1978) Primary and secondary saccades to goals defined by instructions. Vision Res 18:1279–1296

    Article  CAS  PubMed  Google Scholar 

  • Heaton RK, Gladsjo JA, Palmer BW, Kuck J, Marcotte TD, Jeste DV (2001) Stability and course of neuropsychological deficits in schizophrenia. Arch Gen Psychiatry 58:24–32

    Article  CAS  PubMed  Google Scholar 

  • Hoshi E (2006) Functional specialization within the dorsolateral prefrontal cortex: a review of anatomical and physiological studies of non-human primates. Neurosci Res 54:73–84

    Article  PubMed  Google Scholar 

  • Iacoboni M, Woods RP, Mazziotta JC (1996) Brain-behavior relationships: evidence from practice effects in spatial stimulus–response compatibility. J Neurophysiol 76:321–331

    CAS  PubMed  Google Scholar 

  • Johnson PB, Ferraina S, Bianchi L, Caminiti R (1996) Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. Cereb Cortex 6:102–119

    Article  CAS  PubMed  Google Scholar 

  • Kang SS, Dionisio DP, Sponheim SR (2011) Abnormal mechanisms of antisaccade generation in schizophrenia patients and unaffected biological relatives of schizophrenia patients. Psychophysiology 48:350–361

    Article  PubMed Central  PubMed  Google Scholar 

  • Kiebel SJ, Glaser DE, Friston KJ (2003) A heuristic for the degrees of freedom of statistics based on multiple variance parameters. Neuroimage 20:591–600

    Article  PubMed  Google Scholar 

  • Kim JJ, Kwon JS, Park HJ, do Kang H, Kim MS, Lee MC (2003) Functional disconnection between the prefrontal and parietal cortices during working memory processing in schizophrenia: a [15(O)] H20 PET study. Am J Psychiatry 160:919–923

    Article  PubMed  Google Scholar 

  • Lesh TA, Niendam TA, Minzenberg MJ, Carter CS (2011) Cognitive control deficits in schizophrenia: mechanisms and meaning. Neuropsychopharmacology 36:316–338

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu MT, Preston JB, Strick PL (1994) Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. J Comp Neurol 341:375–392

    Article  CAS  PubMed  Google Scholar 

  • MacDonald AW III, Carter CS (2003) Event-related FMRI study of context processing in dorsolateral prefrontal cortex of patients with schizophrenia. J Abnorm Psychol 112(4):689–697

    Article  PubMed  Google Scholar 

  • MacDonald AW III, Cohen JD, Stenger VA, Carter CS (2000) Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288:1835–1838

    Article  CAS  PubMed  Google Scholar 

  • McDowell JE, Brown GG, Paulus M, Martinez A, Stewart SE, Dubowitz DJ, Braff DL (2002) Neural correlates of refixation saccades and antisaccades in normal and schizophrenia subjects. Biol Psychiatry 51:216–223

    Article  PubMed  Google Scholar 

  • Meyer-Lindenberg A, Poline JB, Kohn PD, Holt JL, Egan MF, Weinberger DR, Berman KF (2001) Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am J Psychiatry 158:1809–1817

    Article  CAS  PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  CAS  PubMed  Google Scholar 

  • Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC (2009) Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry 66:811–822

    Article  PubMed Central  PubMed  Google Scholar 

  • Morrens M, Hulstijn W, Sabbe B (2007) Psychomotor slowing in schizophrenia. Schizophr Bull 33(4):1038–1053

    Article  PubMed Central  PubMed  Google Scholar 

  • Munoz DP, Everling S (2004) Look away: the anti-saccade task and the voluntary control of eye movement. Nat Rev Neurosci 5:218–228

    Article  CAS  PubMed  Google Scholar 

  • Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9:856–869

    Article  CAS  PubMed  Google Scholar 

  • Nee DE, Wager TD, Jonides J (2007) Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cogn Affect Behav Neurosci 7:1–17

    Article  PubMed  Google Scholar 

  • Nieuwenstein MR, Aleman A, de Haan EHF (2001) Relationship between symptom dimensions and neurocognitive functioning in schizophrenia: a meta-analysis of WCST and CPT studies. J Psychiatr Res 35:119–125

    Google Scholar 

  • Nuechterlein KH, Subotnik KL, Green MF, Ventura J, Asarnow RF, Gitlin MJ, Yee CM, Gretchen-Doorly D, Mintz J (2011) Neurocognitive predictors of work outcome in recent-onset schizophrenia. Schizophr Bull 37(Suppl 2):S33–S40

    Article  PubMed Central  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Perlstein WM, Dixit NK, Carter CS, Noll DC, Cohen JD (2003) Prefrontal cortex dysfunction mediates deficits in working memory and prepotent responding in schizophrenia. Biol Psychiatry 53:25–38

    Article  PubMed  Google Scholar 

  • Perlstein WM, Carter CS, Noll DC, Cohen JD (2007) Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am J Psychiatry 158:1105–1113

    Article  Google Scholar 

  • Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116

    Article  CAS  PubMed  Google Scholar 

  • Picard N, Strick PL (1996) Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 6:342–353

    Article  CAS  PubMed  Google Scholar 

  • Pierrot-Deseilligny C, Muri RM, Ploner CJ, Gaymard B, Demeret S, Rivaud-Pechoux S (2003) Decisional role of the dorsolateral prefrontal cortex in ocular motor behaviour. Brain 126:1460–1473

    Article  CAS  PubMed  Google Scholar 

  • Pierrot-Deseilligny C, Milea D, Muri RM (2004) Eye movement control by the cerebral cortex. Curr Opin Neurol 17:17–25

    Article  PubMed  Google Scholar 

  • Price CJ, Friston KJ (1999) Scanning patients with task they can perform. Hum Brain Mapp 8:102–108

    Article  CAS  PubMed  Google Scholar 

  • Proctor R, Reeve T (1990) Stimulus–response compatibility: an integrated perspective. Elsevier, Amsterdam

    Google Scholar 

  • Ramsey NF, Koning HAM, Welles P, Cahn W, van der Linden JA, Kahn RS (2002) Excessive recruitment of neural systems subserving logical reasoning in schizophrenia. Brain 125:1793–1807

    Article  CAS  PubMed  Google Scholar 

  • Reuter B, Rakusan L, Kathmanna N (2005) Poor antisaccade performance in schizophrenia: an inhibition deficit? Psychiatry Res 135:1–10

    Article  PubMed  Google Scholar 

  • Reuter B, Herzog E, Kathmann N (2006) Antisaccade performance of schizophrenia patients: evidence of reduced task-set activation and impaired error detection. J Psychiatr Res 40:122–130

    Article  PubMed  Google Scholar 

  • Reuter B, Jager M, Bottlender R, Kathmann N (2007) Impaired action control in schizophrenia: the role of volitional saccade initiation. Neuropsychologia 45:1840–1848

    Article  PubMed  Google Scholar 

  • Roalf DR, Ruben CG, Almasy L, Richard J, Gallagher RS, Prasad K, Wood J, Pogue-Geile MF, Nimgoankar VL, Gur RE (2013) Neurocognitive Performance Stability in a Multiplex Multigenerational Study of Schizophrenia. Schizophr Bull 39(5):1008–1017

    Google Scholar 

  • Rushworth MF, Johansen-Berg H, Gobel SM, Devlin JT (2003) The left parietal and premotor cortices: motor attention and selection. Neuroimage 20(Suppl 1):S89–S100

    Article  PubMed  Google Scholar 

  • Saykin AJ, Shtasel DL, Gur RE, Kester DB, Mozley LH, Stafiniak P, Gur RC (1994) Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. Arch Gen Psychiatry 51:124–131

    Article  CAS  PubMed  Google Scholar 

  • Scheperjans F, Eickhoff SB, Homke L, Mohlberg H, Hermann K, Amunts K, Zilles K (2008a) Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. Cereb Cortex 18:2141–2157

    Article  PubMed Central  PubMed  Google Scholar 

  • Scheperjans F, Hermann K, Eickhoff SB, Amunts K, Schleicher A, Zilles K (2008b) Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. Cereb Cortex 18:846–867

    Article  PubMed  Google Scholar 

  • Schlosser R, Gesierich T, Kaufmann B, Vucurevic G, Hunsche S, Gawehn J, Stoeter P (2003) Altered effective connectivity during working memory performance in schizophrenia: a study with fMRI and structural equation modeling. Neuroimage 19:751–763

    Article  PubMed  Google Scholar 

  • Schroeder S, Essig M, Baudendistel K, Jahn T, Gerdsen I, Stockert A, Schad LR, Knopp MV (1999) Motor dysfunction and sensorimotor cortex activation changes in schizophrenia: a study with functional magnetic resonance imaging. Neuroimage 9:81–87

    Google Scholar 

  • Schumacher EH, Elston PA, D’Esposito M (2003) Neural evidence for representation-specific response selection. J Cogn Neurosci 15:1111–1121

    Article  PubMed  Google Scholar 

  • Shallice T (2004) The fractionation of supervisitory control. In: Gazzaniga MS (ed) The cognitive neuroscience. MIT Press, Cambridge, pp 943–956

    Google Scholar 

  • Snitz BE, MacDonald A III, Cohen JD, Cho RY, Becker T, Carter CS (2005) Lateral and medial hypofrontality in first-episode schizophrenia: functional activity in a medication-naive state and effects of short-term atypical antipsychotic treatment. Am J Psychiatry 162:2322–2329

    Article  PubMed  Google Scholar 

  • Spence SA, Liddle PF, Stefan MD, Hellewell JS, Sharma T, Friston KJ, Hirsch SR, Frith CD, Murray RM, Deakin JF, Grasby PM (2000) Functional anatomy of verbal fluency in people with schizophrenia and those at genetic risk. Focal dysfunction and distributed disconnectivity reappraised. Br J Psychiatry 176:52–60

    Article  CAS  PubMed  Google Scholar 

  • Sylvester CY, Wager TD, Lacey SC, Hernandez L, Nichols TE, Smith EE, Jonides J (2003) Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia 41:357–370

    Article  PubMed  Google Scholar 

  • Tunik E, Rice NJ, Hamilton A, Grafton ST (2007) Beyond grasping: representation of action in human anterior intraparietal sulcus. Neuroimage 36(Suppl 2):T77–T86

    Article  PubMed Central  PubMed  Google Scholar 

  • Weiss EM, Siedenkopf C, Golaszewski S, Mottaghy F M, Hofer A, Kremser C, Felber S, Fleischhacker WW (2007) Brain activation patterns during a selective attention test - a functional MRI study in healthy volunteers and unmedicated patients during an acute episode of schizophrenia. Psychiatry Research: Neuroimaging 154:31–40

    Google Scholar 

  • Wise SP, Boussaoud D, Johnson PB, Caminiti R (1997) Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu Rev Neurosci 20:25–42

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Liang M, Jiang T, Tian L, Liu Y, Liu Z, Liu H, Kuang F (2007a) Functional disconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI. Neurosci Lett 417:297–302

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Liang M, Tian L, Wang K, Hao Y, Liu H, Liu Z, Jiang T (2007b) Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res 97:194–205

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Human Brain Project (R01-MH074457; S.B.E.) and the Initiative and Networking Fund of the Helmholtz Association within the Helmholtz Alliance on Systems Biology (Human Brain Model; S.B.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edna C. Cieslik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cieslik, E.C., Müller, V.I., Kellermann, T.S. et al. Shifted neuronal balance during stimulus–response integration in schizophrenia: an fMRI study. Brain Struct Funct 220, 249–261 (2015). https://doi.org/10.1007/s00429-013-0652-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0652-1

Keywords

Navigation