, Volume 207, Issue 8, pp 542-550

Growth, metastasis, and invasiveness of Drosophila tumors caused by mutations in specific tumor suppressor genes

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


 More than 50 genes have been identified in Drosophila by loss-of-function mutations that lead to overgrowth of specific tissues. Loss-of-function mutations in the lethal giant larvae, discs large, or brain tumor genes cause neoplastic overgrowth of larval brains and imaginal discs. In the present study, the growth and metastatic potential of tumors resulting from mutations in these genes were quantified. Overgrown brains and imaginal discs were transplanted into adults and β-galactosidase accumulation was used as a marker to identify donor cells. Mutations in these three genes generated tumors with similar metastatic patterns. For brain tumors, the metastatic index (a measure we defined as the fraction of hosts that acquired secondary tumors normalized for the amount of primary tumor growth) of each of the three mutants was similar. Analysis of cell proliferation in mutant brains suggests that the tumors arise from a population of several hundred cells which represent only 1–2% of the cells in third instar larval brains. For imaginal disc tumors from lethal giant larvae and brain tumor mutants, it is shown for the first time that they can be metastatic and invasive. Primary imaginal disc tumors from lethal giant larvae and brain tumor mutants formed secondary tumors in 43 and 53% of the hosts, respectively, although the secondary tumors were, in general, smaller than the secondary tumors derived from primary brain tumors.

Received: 18 August 1997 / Accepted: 16 October 1997