Skip to main content
Log in

Patterns of molecular evolution of the germ line specification gene oskar suggest that a novel domain may contribute to functional divergence in Drosophila

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

In several metazoans including flies of the genus Drosophila, germ line specification occurs through the inheritance of maternally deposited cytoplasmic determinants, collectively called germ plasm. The novel insect gene oskar is at the top of the Drosophila germ line specification pathway, and also plays an important role in posterior patterning. A novel N-terminal domain of oskar (the Long Oskar domain) evolved in Drosophilids, but the role of this domain in oskar functional evolution is unknown. Trans-species transgenesis experiments have shown that oskar orthologs from different Drosophila species have functionally diverged, but the underlying selective pressures and molecular changes have not been investigated. As a first step toward understanding how Oskar function could have evolved, we applied molecular evolution analysis to oskar sequences from the completely sequenced genomes of 16 Drosophila species from the Sophophora subgenus, Drosophila virilis and Drosophila immigrans. We show that overall, this gene is subject to purifying selection, but that individual predicted structural and functional domains are subject to heterogeneous selection pressures. Specifically, two domains, the Drosophila-specific Long Osk domain and the region that interacts with the germ plasm protein Lasp, are evolving at a faster rate than other regions of oskar. Further, we provide evidence that positive selection may have acted on specific sites within these two domains on the D. virilis branch. Our domain-based analysis suggests that changes in the Long Osk and Lasp-binding domains are strong candidates for the molecular basis of functional divergence between the Oskar proteins of D. melanogaster and D. virilis. This molecular evolutionary analysis thus represents an important step towards understanding the role of an evolutionarily and developmentally critical gene in germ plasm evolution and assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Telford MJ (2010) TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. doi:10.1093/nar/gkq291, 38 (Web Server issue):W7-13

    PubMed Central  PubMed  Google Scholar 

  • Anantharaman V, Zhang D, Aravind L (2010) OST-HTH: a novel predicted RNA-binding domain. Biol Direct 5:13. doi:10.1186/1745-6150-5-13

    Article  PubMed Central  PubMed  Google Scholar 

  • Anisimova M, Yang Z (2007) Multiple hypothesis testing to detect lineages under positive selection that affects only a few sites. Mol Biol Evol 24(5):1219–1228. doi:10.1093/molbev/msm042

    Article  CAS  PubMed  Google Scholar 

  • Anne J (2010) Targeting and anchoring Tudor in the pole plasm of the Drosophila Oocyte. PLoS ONE 5(12):e14362. doi:10.1371/journal.pone.0014362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Babu K, Cai Y, Bahri S, Yang X, Chia W (2004) Roles of Bifocal, Homer, and F-actin in anchoring Oskar to the posterior cortex of Drosophila oocytes. Genes Dev 18(2):138–143. doi:10.1101/gad.282604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blackburne BP, Whelan S (2013) Class of multiple sequence alignment algorithm affects genomic analysis. Mol Biol Evol 30(3):642–653. doi:10.1093/molbev/mss256

    Article  CAS  PubMed  Google Scholar 

  • Blackstone NW, Jasker BD (2003) Phylogenetic considerations of clonality, coloniality, and, mode of germline development in animals. J Exp Zool B Mol Dev Evol 297B(1):35–47

    Article  Google Scholar 

  • Breitwieser W, Markussen F-H, Horstmann H, Ephrussi A (1996) Oskar protein interaction with Vasa represents an essential step in polar granule assembly. Genes Dev 10:2179–2188

    Article  CAS  PubMed  Google Scholar 

  • Callebaut I, Mornon J-P (2010) LOTUS, a new domain associated with small RNA pathways in the germline. Bioinformatics 26(9):1140–1144. doi:10.1093/bioinformatics/btq122

    Article  CAS  PubMed  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552

    Article  CAS  PubMed  Google Scholar 

  • Cavey M, Hijal S, Zhang X, Suter B (2005) Drosophila valois encodes a divergent WD protein that is required for Vasa localization and Oskar protein accumulation. Development 132(3):459–468

    Article  CAS  PubMed  Google Scholar 

  • Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, Kaufman TC, Kellis M, Gelbart W, Iyer VN, Pollard DA, Sackton TB, Larracuente AM, Singh ND, Abad JP, Abt DN, Adryan B, Aguade M, Akashi H, Anderson WW, Aquadro CF, Ardell DH, Arguello R, Artieri CG, Barbash DA, Barker D, Barsanti P, Batterham P, Batzoglou S, Begun D, Bhutkar A, Blanco E, Bosak SA, Bradley RK, Brand AD, Brent MR, Brooks AN, Brown RH, Butlin RK, Caggese C, Calvi BR, Bernardo de Carvalho A, Caspi A, Castrezana S, Celniker SE, Chang JL, Chapple C, Chatterji S, Chinwalla A, Civetta A, Clifton SW, Comeron JM, Costello JC, Coyne JA, Daub J, David RG, Delcher AL, Delehaunty K, Do CB, Ebling H, Edwards K, Eickbush T, Evans JD, Filipski A, Findeiss S, Freyhult E, Fulton L, Fulton R, Garcia ACL, Gardiner A, Garfield DA, Garvin BE, Gibson G, Gilbert D, Gnerre S, Godfrey J, Good R, Gotea V, Gravely B, Greenberg AJ, Griffiths-Jones S, Gross S, Guigo R, Gustafson EA, Haerty W, Hahn MW, Halligan DL, Halpern AL, Halter GM, Han MV, Heger A, Hillier L, Hinrichs AS, Holmes I, Hoskins RA, Hubisz MJ, Hultmark D, Huntley MA, Jagadeeshan S, Jeck WR, Johnson J, Jones CD, Jordan WC, Karpen GH, Kataoka E, Keightley PD, Kheradpour P, Kirkness EF, Koerich LB, Kristiansen K, Kudrna D, Kulathinal RJ, Kumar S, Kwok R, Lander E, Langley CH, Lapoint R, Lazzaro BP, Lee S-J, Levesque L, Li R, Lin C-F, Lin MF, Lindblad-Toh K, Llopart A, Long M, Low L, Lozovsky E, Lu J, Luo M, Machado CA, Makalowski W, Marzo M, Matsuda M, Matzkin L, McAllister B, McBride CS, McKernan B, McKernan K, Mendez-Lago M, Minx P, Mollenhauer MU, Montooth K, Mount SM, Mu X, Myers E, Negre B, Newfeld S, Nielsen R, Noor MAF, O’Grady P, Pachter L, Papaceit M, Parisi MJ, Parisi M, Parts L, Pedersen JS, Pesole G, Phillippy AM, Ponting CP, Pop M, Porcelli D, Powell JR, Prohaska S, Pruitt K, Puig M, Quesneville H, Ram KR, Rand D, Rasmussen MD, Reed LK, Reenan R, Reily A, Remington KA, Rieger TT, Ritchie MG, Robin C, Rogers Y-H, Rohde C, Rozas J, Rubenfield MJ, Ruiz A, Russo S, Salzberg SL, Sanchez-Gracia A, Saranga DJ, Sato H, Schaeffer SW, Schatz MC, Schlenke T, Schwartz R, Segarra C, Singh RS, Sirot L, Sirota M, Sisneros NB, Smith CD, Smith TF, Spieth J, Stage DE, Stark A, Stephan W, Strausberg RL, Strempel S, Sturgill D, Sutton G, Sutton GG, Tao W, Teichmann S, Tobari YN, Tomimura Y, Tsolas JM, Valente VLS, Venter E, Venter JC, Vicario S, Vieira FG, Vilella AJ, Villasante A, Walenz B, Wang J, Wasserman M, Watts T, Wilson D, Wilson RK, Wing RA, Wolfner MF, Wong A, Wong GK-S, Wu C-I, Wu G, Yamamoto D, Yang H-P, Yang S-P, Yorke JA, Yoshida K, Zdobnov E, Zhang P, Zhang Y, Zimin AV, Baldwin J, Abdouelleil A, Abdulkadir J, Abebe A, Abera B, Abreu J, Acer SC, Aftuck L, Alexander A, An P, Anderson E, Anderson S, Arachi H, Azer M, Bachantsang P, Barry A, Bayul T, Berlin A, Bessette D, Bloom T, Blye J, Boguslavskiy L, Bonnet C, Boukhgalter B, Bourzgui I, Brown A, Cahill P, Channer S, Cheshatsang Y, Chuda L, Citroen M, Collymore A, Cooke P, Costello M, D’Aco K, Daza R, De Haan G, DeGray S, DeMaso C, Dhargay N, Dooley K, Dooley E, Doricent M, Dorje P, Dorjee K, Dupes A, Elong R, Falk J, Farina A, Faro S, Ferguson D, Fisher S, Foley CD, Franke A, Friedrich D, Gadbois L, Gearin G, Gearin CR, Giannoukos G, Goode T, Graham J, Grandbois E, Grewal S, Gyaltsen K, Hafez N, Hagos B, Hall J, Henson C, Hollinger A, Honan T, Huard MD, Hughes L, Hurhula B, Husby ME, Kamat A, Kanga B, Kashin S, Khazanovich D, Kisner P, Lance K, Lara M, Lee W, Lennon N, Letendre F, LeVine R, Lipovsky A, Liu X, Liu J, Liu S, Lokyitsang T, Lokyitsang Y, Lubonja R, Lui A, MacDonald P, Magnisalis V, Maru K, Matthews C, McCusker W, McDonough S, Mehta T, Meldrim J, Meneus L, Mihai O, Mihalev A, Mihova T, Mittelman R, Mlenga V, Montmayeur A, Mulrain L, Navidi A, Naylor J, Negash T, Nguyen T, Nguyen N, Nicol R, Norbu C, Norbu N, Novod N, O’Neill B, Osman S, Markiewicz E, Oyono OL, Patti C, Phunkhang P, Pierre F, Priest M, Raghuraman S, Rege F, Reyes R, Rise C, Rogov P, Ross K, Ryan E, Settipalli S, Shea T, Sherpa N, Shi L, Shih D, Sparrow T, Spaulding J, Stalker J, Stange-Thomann N, Stavropoulos S, Stone C, Strader C, Tesfaye S, Thomson T, Thoulutsang Y, Thoulutsang D, Topham K, Topping I, Tsamla T, Vassiliev H, Vo A, Wangchuk T, Wangdi T, Weiand M, Wilkinson J, Wilson A, Yadav S, Young G, Yu Q, Zembek L, Zhong D, Zimmer A, Zwirko Z, Jaffe DB, Alvarez P, Brockman W, Butler J, Chin C, Grabherr M, Kleber M, Mauceli E, MacCallum I (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450(7167):203–218. doi:10.1038/nature06341

    Article  PubMed  Google Scholar 

  • Counce SJ (1963) Developmental morphology of polar granules in Drosophila including observations on pole cell behavior and distribution during embryogenesis. J Morphol 112(2):129–145

    Article  Google Scholar 

  • Da Lage JL, Kergoat GJ, Maczkowiak F, Silvain FF, Cariou ML, Lachaise D (2006) A phylogeny of Drosophilidae using the Amyrel gene: questioning the Drosophila melanogaster species group boundaries. J Zool Syst Evol Res 45(1):47–63

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma 5:113. doi:10.1186/1471-2105-5-113

    Article  Google Scholar 

  • Ephrussi A, Lehmann R (1992) Induction of germ cell formation by oskar. Nature 358(6385):387–392

    Article  CAS  PubMed  Google Scholar 

  • Ephrussi A, Dickinson LK, Lehmann R (1991) Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66(1):37–50

    Article  CAS  PubMed  Google Scholar 

  • Ewen-Campen B, Schwager EE, Extavour CG (2010) The molecular machinery of germ line specification. Mol Reprod Dev 77(1):3–18

    Article  CAS  PubMed  Google Scholar 

  • Ewen-Campen B, Srouji JR, Schwager EE, Extavour CG (2012) oskar predates the evolution of germ plasm in insects. Curr Biol 22(23):2278–2283

    Article  CAS  PubMed  Google Scholar 

  • Extavour CG, Akam ME (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130(24):5869–5884

    Article  CAS  PubMed  Google Scholar 

  • Gaunt MW, Miles MA (2002) An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. Mol Biol Evol 19(5):748–761

    Article  CAS  PubMed  Google Scholar 

  • Gharib WH, Robinson-Rechavi M (2013) The branch-site test of positive selection is surprisingly robust but lacks power under synonymous substitution saturation and variation in GC. Mol Biol Evol 30(7):1675–1686. doi:10.1093/molbev/mst062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goltsev Y, Hsiong W, Lanzaro G, Levine M (2004) Different combinations of gap repressors for common stripes in Anopheles and Drosophila embryos. Dev Biol 275(2):435–446

    Article  CAS  PubMed  Google Scholar 

  • Jones JR, Macdonald PM (2007) Oskar controls morphology of polar granules and nuclear bodies in Drosophila. Development 134(2):233–236

    Article  CAS  PubMed  Google Scholar 

  • Juhn J, James AA (2006) oskar gene expression in the vector mosquitoes, Anopheles gambiae and Aedes aegypti. Insect Mol Biol 15(3):363–372

    Article  CAS  PubMed  Google Scholar 

  • Juhn J, Marinotti O, Calvo E, James AA (2008) Gene structure and expression of nanos (nos) and oskar (osk) orthologues of the vector mosquito, Culex quinquefasciatus. Insect Mol Biol 17(5):545–552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keller O, Kollmar M, Stanke M, Waack S (2011) A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics 27(6):757–763. doi:10.1093/bioinformatics/btr010

    Article  CAS  PubMed  Google Scholar 

  • Kopp A (2006) Basal relationships in the Drosophila melanogaster species group. Mol Phylogenet Evol 39(3):787–798. doi:10.1016/j.ympev.2006.01.029

    Article  CAS  PubMed  Google Scholar 

  • Larracuente AM, Sackton TB, Greenberg AJ, Wong A, Singh ND, Sturgill D, Zhang Y, Oliver B, Clark AG (2008) Evolution of protein-coding genes in Drosophila. Trends Genet 24(3):114–123. doi:10.1016/j.tig.2007.12.001

    Article  CAS  PubMed  Google Scholar 

  • Löytynoja A, Goldman N (2008) Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science (New York, NY) 320(5883):1632–1635. doi:10.1126/science.1158395

    Article  Google Scholar 

  • Lynch JA, Özüak O, Khila A, Abouheif E, Desplan C, Roth S (2011) The phylogenetic origin of oskar coincided with the origin of maternally provisioned germ plasm and pole cells at the base of the holometabola. PLoS Genet 7(4):e1002029. doi:10.1371/journal.pgen.1002029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mahowald AP (1962) Fine structure of pole cells and polar granules in Drosophila melanogaster. J Exp Zool 151:201–215

    Article  Google Scholar 

  • Mahowald AP (1968) Polar granules of Drosophila. II. Ultrastructural changes during early embryogenesis. J Exp Zool 167(2):237–261. doi:10.1002/jez.1401670211

    Article  CAS  PubMed  Google Scholar 

  • Markova-Raina P, Petrov D (2011) High sensitivity to aligner and high rate of false positives in the estimates of positive selection in the 12 Drosophila genomes. Genome Res 21(6):863–874. doi:10.1101/gr.115949.110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Markussen FH, Michon AM, Breitwieser W, Ephrussi A (1995) Translational control of oskar generates short OSK, the isoform that induces pole plasm assembly. Development 121(11):3723–3732

    CAS  PubMed  Google Scholar 

  • Michod RE (2005) On the transfer of fitness from the cell to the multicellular organism. Biol Philos 20(5):967–987

    Article  Google Scholar 

  • Obbard DJ, Maclennan J, Kim KW, Rambaut A, O’Grady PM, Jiggins FM (2012) Estimating divergence dates and substitution rates in the Drosophila phylogeny. Mol Biol Evol 29(11):3459–3473. doi:10.1093/molbev/mss150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oliveira DCSG, Almeida FC, O’Grady PM, Armella MA, DeSalle R, Etges WJ (2012) Monophyly, divergence times, and evolution of host plant use inferred from a revised phylogeny of the Drosophila repleta species group. Mol Phylogenet Evol 64(3):533–544. doi:10.1016/j.ympev.2012.05.012

    Article  PubMed  Google Scholar 

  • Privman E, Penn O, Pupko T (2012) Improving the performance of positive selection inference by filtering unreliable alignment regions. Mol Biol Evol 29(1):1–5. doi:10.1093/molbev/msr177

    Article  CAS  PubMed  Google Scholar 

  • Remsen J, O’Grady P (2002) Phylogeny of Drosophilinae (Diptera: Drosophilidae), with comments on combined analysis and character support. Mol Phylogenet Evol 24(2):249–264

    Article  PubMed  Google Scholar 

  • Robe LJ, Valente VLS, Budnik M, Loreto ELS (2005) Molecular phylogeny of the subgenus Drosophila (Diptera, Drosophilidae) with an emphasis on Neotropical species and groups: a nuclear versus mitochondrial gene approach. Mol Phylogenet Evol 36(3):623–640. doi:10.1016/j.ympev.2005.05.005

    Article  CAS  PubMed  Google Scholar 

  • Rongo C, Gavis ER, Lehmann R (1995) Localization of oskar RNA regulates oskar translation and requires Oskar protein. Development 121(9):2737–2746

    CAS  PubMed  Google Scholar 

  • Sayle RA, Milner-White EJ (1995) RASMOL: biomolecular graphics for all. Trends Biochem Sci 20(9):374

    Article  CAS  PubMed  Google Scholar 

  • Studer RA, Penel S, Duret L, Robinson-Rechavi M (2008) Pervasive positive selection on duplicated and nonduplicated vertebrate protein coding genes. Genome Res 18(9):1393–1402. doi:10.1101/gr.076992.108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suyama R, Jenny A, Curado S, Pellis-van Berkel W, Ephrussi A (2009) The actin-binding protein Lasp promotes Oskar accumulation at the posterior pole of the Drosophila embryo. Development 136(1):95–105. doi:10.1242/dev.027698

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Subramanian S, Kumar S (2004) Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Mol Biol Evol 21(1):36–44. doi:10.1093/molbev/msg236

    Article  CAS  PubMed  Google Scholar 

  • van der Linde K, Houle D, Spicer GS, Steppan SJ (2010) A supermatrix-based molecular phylogeny of the family Drosophilidae. Genet Res 92(1):25–38

    Article  Google Scholar 

  • Vanzo NF, Ephrussi A (2002) Oskar anchoring restricts pole plasm formation to the posterior of the Drosophila oocyte. Development 129(15):3705–3714

    CAS  PubMed  Google Scholar 

  • Vanzo N, Oprins A, Xanthakis D, Ephrussi A, Rabouille C (2007) Stimulation of endocytosis and actin dynamics by Oskar polarizes the Drosophila oocyte. Dev Cell 12(4):543–555

    Article  CAS  PubMed  Google Scholar 

  • Webster PJ, Suen J, Macdonald PM (1994) Drosophila virilis oskar transgenes direct body patterning but not pole cell formation or maintenance of mRNA localization in D. melanogaster. Development 120(7):2027–2037

    CAS  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591. doi:10.1093/molbev/msm088

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Swanson WJ (2002) Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes. Mol Biol Evol 19(1):49–57

    Article  PubMed  Google Scholar 

  • Yang Z, Nielsen R, Goldman N, Pedersen AM (2000a) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155(1):431–449

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Z, Swanson WJ, Vacquier VD (2000b) Maximum-likelihood analysis of molecular adaptation in abalone sperm lysin reveals variable selective pressures among lineages and sites. Mol Biol Evol 17(10):1446–1455

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Wong WS, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22(4):1107–1118. doi:10.1093/molbev/msi097

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Hou Z-C, Y-h Q, Kang H, Zeng Q-t (2012) Increasing the data size to accurately reconstruct the phylogenetic relationships between nine subgroups of the Drosophila melanogaster species group (Drosophilidae, Diptera). Mol Phylogenet Evol 62(1):214–223. doi:10.1016/j.ympev.2011.09.018

    Article  PubMed  Google Scholar 

  • Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22(12):2472–2479. doi:10.1093/molbev/msi237

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Paul Macdonald for the plasmid containing the D. virilis oskar cDNA, to John Srouji for Sanger sequencing and discussion of the results, to Victor Zeng and Amit Indap for assistance with preliminary analyses, and to Extavour lab members for discussion of the manuscript. This work was partly supported by NSF grant IOS-0817678 to CGE and funds from Harvard University.

Competing interests

The authors declare that they have no competing interests.

Author contributions

AA conceived of the study, created alignments, and performed evolutionary rate analyses. CGE assisted with study design and performed analyses of amino acid physicochemical properties and phylogenetic distribution of germ plasm morphology. Both authors wrote and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abha Ahuja or Cassandra G. Extavour.

Additional information

Communicated by: Claude Desplan

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Nucleotide sequences and accessions of sequences of oskar orthologs used for analyses. (PDF 99.1 KB)

Online Resource 2

Oskar amino acid alignment generated with sequences from 18 Drosophilids using the MUSCLE MSA, and the results of multiple PAML analyses of this alignment. (PDF 296 kb)

Online Resource 3

Oskar amino acid alignment generated with sequences from 18 Drosophilids using the PRANK MSA, and the results of multiple PAML analyses of this alignment. (PDF 306 kb)

Online Resource 4

Amino acid alignments of conserved sequence blocks from specific predicted structural and interaction Oskar domains from 18 Drosophilids using the PRANK MSA, and the results of the PAML analysis of these alignments. (PDF 170 kb)

Online Resource 5

Amino acid alignments of Oskar from the five melanogaster subgroup Drosophila species using the MUSCLE MSA, and the results of multiple PAML analyses of this alignment. (PDF 192 kb)

Online Resource 6

Amino acid alignments of specific predicted structural and interaction Oskar domains from seven Drosophilids (melanogaster subgroup members plus D. virilis and D. immigrans) using the PRANK MSA, and the results of multiple PAML analyses of these alignments. (PDF 173 kb)

Online Resource 7

Clustal alignment of the amino acid translation of the three D. virilis alleles used in this study: (1) annotated from genomic sequence; NCBI accession XM_002053233.1; (2) cDNA sequence reported by Webster et al. (1994) (“Macdonald allele”); NCBI accession L22556.1; and (3) cDNA sequence obtained from Macdonald lab and verified by Sanger sequencing. Residues that are different between the different alleles and/or under positive selection are indicated. (PDF 101 kb)

Online Resource 8

Amino acid alignments of the Long Osk domain from 18 Drosophilids including the D. virilis allele sequence from Webster et al. (1994) using the MUSCLE MSA, and the results of multiple PAML analyses of these alignments. (PDF 134 kb)

Online Resource 9

Amino acid alignments of the Long Osk and Lasp-binding domains from 18 Drosophilids including the D. virilis allele sequence from Webster et al. (1994) using the PRANK MSA, and the results of multiple PAML analyses of these alignments. (PDF 148 kb)

Online Resource 10

Phylogenetic distribution of germ plasm morphology in Drosophila species for which data are available, as determined by histology and electron microscopy (Mahowald 1962, 1968; Counce 1963). In the unipolar morphology all or most germ granules are aggregated into a single, large perinuclear body. In the perinuclear morphology, germ granules are aggregated into multiple perinuclear bodies distributed over the cytoplasmic face of nuclear membrane. In the dispersed morphology, observed only in D. melanogaster, some germ granules are perinuclear and others are distributed throughout the cytoplasm. Species included in the present molecular evolution analysis are indicated in bold face; colored text (red/blue) indicates functional conservation of oskar with respect to germ plasm assembly in D. melanogaster (Webster et al. 1994; Jones and Macdonald 2007). No sequence data are currently publicly available for the remaining species shown, with the exception of D. willistoni, whose oskar sequence was incomplete and excluded from the present analysis (see Methods for details). Phylogenetic relationships from (Oliveira et al. 2012; Da Lage et al. 2006; van der Linde et al. 2010; Robe et al. 2005). (PDF 359 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahuja, A., Extavour, C.G. Patterns of molecular evolution of the germ line specification gene oskar suggest that a novel domain may contribute to functional divergence in Drosophila . Dev Genes Evol 224, 65–77 (2014). https://doi.org/10.1007/s00427-013-0463-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-013-0463-7

Keywords

Navigation