Skip to main content
Log in

Nervous system development of two crinoid species, the sea lily Metacrinus rotundus and the feather star Oxycomanthus japonicus

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Nervous system development in echinoderms has been well documented, especially for sea urchins and starfish. However, that of crinoids, the most basal group of extant echinoderms, has been poorly studied due to difficulties in obtaining their larvae. In this paper, we report nervous system development from two species of crinoids, from hatching to late doliolaria larvae in the sea lily Metacrinus rotundus and from hatching to cystidean stages after settlement in the feather star Oxycomanthus japonicus. The two species showed a similar larval nervous system pattern with an extensive anterior larval ganglion. The ganglion was similar to that in sea urchins which is generally regarded as derived. In contrast with other echinoderm and hemichordate larvae, synaptotagmin antibody 1E11 failed to reveal ciliary band nerve tracts. Basiepithelial nerve cells formed a net-like structure in the M. rotundus doliolaria larvae. In O. japonicus, the larval ganglion was still present 1 day after settlement when the adult nervous system began to appear inside the crown. Stalk nerves originated from the crown and extended down the stalk, but had no connections with the remaining larval ganglion at the base of the stalk. The larval nervous system was not incorporated into the adult nervous system, and the larval ganglion later disappeared. The aboral nerve center, the dominant nervous system in adult crinoids, was formed at the early cystidean stage, considerably earlier than previously suggested. Through comparisons with nervous system development in other ambulacraria, we suggest the possible nervous system development pattern of the echinoderm ancestor and provide new implications on the evolutionary history of echinoderm life cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amemiya S, Oji T (1992) Regeneration in sea lilies. Nature 357:546–547

    Article  Google Scholar 

  • Beer AJ, Moss C, Thorndyke M (2001) Development of serotonin-like and SALMFamide-like immunoreactivity in the nervous system of the sea urchin Psammechinus miliaris. Biol Bull 200:268–280

    Article  CAS  PubMed  Google Scholar 

  • Bishop CD, Burke RD (2007) Ontogeny of the holothurian larval nervous system: evolution of larval forms. Dev Genes Evol 217:585–592

    Article  PubMed  Google Scholar 

  • Bohn JM, Heinzeller T (1999) Morphology of the bourgueticrinid and isocrinid aboral nervous system and its possible phylogenetic implications (Echinodemata, Crinoidea). Acta Zool 80:241–249

    Article  Google Scholar 

  • Breimer A (1978) Recent crinoids. In: Moore RC, Teichert C (eds) Treatise on invertebrate paleontology, part T (Echinodermata 2). Geological Society of America and University of Kansas, Colorado and Kansas, pp 9–58

    Google Scholar 

  • Breimer A, Lane NG (1978) Ecology and paleoecology. In: Moore RC, Teichert C (eds) Treatise on invertebrate paleontology, part T (Echinodermata 2). Geological Society of America and University of Kansas, Colorado and Kansas, pp 316–347

    Google Scholar 

  • Burke RD (1983) Neural control of metamorphosis in Dendraster excentricus. Biol Bull 164:176–188

    Article  Google Scholar 

  • Burke RD, Osborne L, Wang D, Murabe N, Yaguchi S, Nakajima Y (2006) Neuron-specific expression of a synaptotagmin gene in the sea urchin Strongylocentrotus purpuratus. J Comp Neurol 496:244–251

    Article  CAS  PubMed  Google Scholar 

  • Byrne M, Cisternas P (2002) Development and distribution of the peptidergic system in larval and adult Patiriella: comparison of sea star bilateral and radial nervous systems. J Comp Neurol 451:101–114

    Article  CAS  PubMed  Google Scholar 

  • Byrne M, Nakajima Y, Chee FC, Burke RD (2007) Apical organs in echinoderm larvae: insights into larval evolution in the Ambulacraria. Evol Dev 9:432–445

    PubMed  Google Scholar 

  • Chia FS, Burke RD, Koss R, Mladenov PV, Rumrill SS (1986) Fine structure of the doliolaria larva of the feather star Florometra serratissima (Echinodermata: Crinoidea), with special emphasis on the nervous system. J Morphol 189:99–120

    Article  Google Scholar 

  • Cohen BL, Ameziane-Cominardi N, Eleaume M, de Forges BR (2004) Crinoid phylogeny: a preliminary analysis (Echinodermata: Crinoidea). Mar Biol 144:605–617

    Article  Google Scholar 

  • Dupont S, Thorndyke W, Thorndyke MC, Burke RD (2009) Neural development of the brittlestar Amphiura filiformis. Dev Genes Evol 219:159–166

    Article  PubMed  Google Scholar 

  • Foote M (1999) Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology 25(Suppl 2):1–115

    Article  Google Scholar 

  • Garstang W (1894) Preliminary note on a new theory of the phylogeny of the Chordata. Zool Anz 17:122–125

    Google Scholar 

  • Hara Y, Yamaguchi M, Akasaka K, Nakano H, Nonaka M, Amemiya S (2006) Expression patterns of Hox genes in larvae of the sea lily Metacrinus rotundus. Dev Genes Evol 216:797–809

    Article  CAS  PubMed  Google Scholar 

  • Heinzeller T (1998) The nervous system of crinoids: survey and taxonomic implications. In: Rich M, Telford M (eds) Echinoderms: San Francisco: Proceedings of the ninth International Echinoderm Conference, San Francisco/California/USA/5–9 August 1996. Balkema, Rotterdam, pp 169–174

    Google Scholar 

  • Heinzeller T, Welsch U (1994) Crinoidea. In: Harrison FW, Chia FS (eds) Microscopic anatomy of invertebrates. Echinodermata, vol 14. Wiley-Liss, New York, pp 9–148

    Google Scholar 

  • Hirokawa T, Komatsu M, Nakajima Y (2008) Development of the nervous system in the brittle star Amphipholis kochii. Dev Genes Evol 218:15–21

    Article  PubMed  Google Scholar 

  • Holland ND (1991) Echinodermata: Crinoidea. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates. Echinoderms and lophophorates, vol 4. Boxwood Press, Pacific Grove, pp 247–299

    Google Scholar 

  • Hyman LH (1955) The invertebrates. Echinodermata the coelomate bilateria, vol 4. McGraw-Hill, New York

    Google Scholar 

  • Janies D (2001) Phylogenetic relationships of extant echinoderm classes. Can J Zool 79:1232–1250

    Article  CAS  Google Scholar 

  • Kubota H (1988) Crinoidea. In: Dan K, Sekiguchi K, Andoh H, Watanabe H (eds) Development of invertebrates. Baifuukan, Tokyo, pp 332–338

    Google Scholar 

  • Lacalli TC, West JE (1986) Ciliary band formation in the doliolaria larva of Florometra 1. The development of normal epithelial pattern. J Embryol Exp Morph 96:303–323

    CAS  PubMed  Google Scholar 

  • Lacalli TC, West JE (2000) The auricularia-to-doliolaria transformation in two aspidochirote holothurians, Holothuria mexicana and Stichopus californicus. Invertebr Biol 119:421–432

    Google Scholar 

  • Lester S (1988) Settlement and metamorphosis of Rhabdopleura normani (Hemichordata: Pterobranchia). Acta Zool 69:111–120

    Article  Google Scholar 

  • Mashanov VS, Zueva OR, Heinzeller T, Ashchauer B, Dolmatov IY (2007) Developmental origin of the adult nervous system in a holothurian: an attempt to unravel the enigma of neurogenesis in echinoderms. Evol Dev 9:244–256

    PubMed  Google Scholar 

  • Nakajima Y, Humphreys T, Kaneko H, Tagawa K (2004a) Development and neural organization of the tornaria larvae of the Hawaiian hemichordate, Ptychodera flava. Zool Sci 21:69–78

    Article  PubMed  Google Scholar 

  • Nakajima Y, Kaneko H, Murray G, Burke RD (2004b) Divergent patterns of neural development in larval echinoids and asteroids. Evol Dev 6:95–104

    Article  PubMed  Google Scholar 

  • Nakano H, Hibino T, Oji T, Hara Y, Amemiya S (2003) Larval stages of a living sea lily (stalked crinoid echinoderm). Nature 421:158–160

    Article  CAS  PubMed  Google Scholar 

  • Nakano H, Hibino T, Hara Y, Oji T, Amemiya S (2004a) Regrowth of the stalk of the sea lily, Metacrinus rotundus (Echinodermata: Crinoidea). J Exp Zool 301A:464–471

    Article  Google Scholar 

  • Nakano H, Hibino T, Hara Y, Oji T, Amemiya S (2004b) Development of the sea lily Metacrinus rotundus: comparisons with feather stars. In: Heinzeller T, Nebelsick JH (eds) Echinoderms: Munchen. Taylor & Francis Group, London, pp 41–44

    Google Scholar 

  • Nakano H, Murabe N, Amemiya S, Nakajima Y (2006) Nervous system development of the sea cucumber Stichopus japonicus. Dev Biol 292:205–212

    Article  CAS  PubMed  Google Scholar 

  • Nezlin LP, Prodnikov IM, Davydov PV (1991) Catecholaminergic neurons in the larval nervous system of starfishes during metamorphosis. Zhu Evol Biokh Fiziol 27:19–27

    CAS  Google Scholar 

  • Nielsen C, Hay-Schmidt A (2007) Development of the enteropneust Ptychodera flava: ciliary bands and the nervous system. J Morphol 268:551–570

    Article  PubMed  Google Scholar 

  • Nomaksteinsky M, Rottinger E, Dufour HD, Chettouh Z, Lowe CJ, Martindale MQ, Brunet JF (2009) Centralization of the deuterostome nervous system predates chordates. Curr Biol 19:1264–1269

    Article  CAS  PubMed  Google Scholar 

  • Paul CRC, Smith AB (1984) The early radiation and phylogeny of echinoderms. Biol Rev 59:443–481

    Article  Google Scholar 

  • Przibram H (1901) Experimentelle studien uber regeneration. Archiv fur Entwickelungsmechanik 11:321–345

    Article  Google Scholar 

  • Scouras A, Smith MJ (2006) The complete mitochondrial genomes of the sea lily Gymnocrinus richeri and the feather star Phanogenia gracilis: signature nucleotide bias and unique nad4L gene rearrangement within crinoids. Mol Phylogenet Evol 39:323–334

    Article  CAS  PubMed  Google Scholar 

  • Seelinger O (1892) Studien zur entwicklungsgeschte der Crinoiden. Zool Jahrb Abt Anat Ontog 6:161–444

    Google Scholar 

  • Shibata TF, Sato A, Oji T, Akasaka K (2008) Development and growth of the feather star Oxycomanthus japonicus to sexual maturity. Zool Sci 25:1075–1083

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. Tomoko F. Shibata, Atsuko Sato, Naoki Kuzuno, Yuko Hara, Taku Hibino, and the staff of MMBS for their help in taking care of both adult and larval crinoids. We thank Drs. Tatsuo Oji, Hiroyuki Kaneko, and Michael C. Thorndyke for their useful suggestions and discussions. We thank Drs. Aiko Hirata and Hiroshi Nakagawa for their valuable instructions on SEM. H. N. was supported by the JSPS Research Fellowship for Young Scientists, HFSP Long-Term Fellowship and the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shonan Amemiya.

Additional information

Communicated by H. Nishida

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakano, H., Nakajima, Y. & Amemiya, S. Nervous system development of two crinoid species, the sea lily Metacrinus rotundus and the feather star Oxycomanthus japonicus . Dev Genes Evol 219, 565–576 (2009). https://doi.org/10.1007/s00427-010-0317-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-010-0317-5

Keywords

Navigation