, Volume 219, Issue 2, pp 67-77
Date: 25 Nov 2008

Development of nervous systems to metamorphosis in feeding and non-feeding echinoid larvae, the transition from bilateral to radial symmetry

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The development of nervous system (NS) in the non-feeding vestibula larva of the sea urchin, Holopneustes purpurescens, and the feeding echinopluteus larva of Hemicentrotus pulcherrimus was examined by focusing on fate during metamorphosis. In H. purpurescens, the serotonergic NS (SerNS) appeared simultaneously and independently in larval tissue and adult rudiment, respectively, from 3-day post-fertilization. In 4-day vestibulae, an expansive aboral ganglion (450 × 100 μm) was present in the larval mid region that extended axons toward the oral ectoderm. These axons diverged near the base of the primary podia. An axonal bundle connected with the primary podia and the rim of vestopore on the oral side. Thus, the SerNS of the larva innervated the rudiment at early stage of development of the primary podia. This innervation was short-lived, and immediately before metamorphosis, it disappeared from the larval and adult tissue domains, whereas non-SerNS marked by synaptotagmin remained. The NS of 1-month post-fertilization plutei of H. pulcherrimus comprised an apical ganglion (50 × 17 μm) and axons that extended to the ciliary bands and the adult rudiment (AR). A major basal nerve of serotonergic and non-serotonergic axons and a minor non-serotonergic nerve comprised the ciliary band nerve. In 3-month plutei, axonal connection among the primary podia in the neural folds completed. The SerNS never developed in the AR. Thus, there was distinctive difference between feeding- and non-feeding larvae of the above sea urchins with respect to SerNS and the AR.

Communicated by N. Satoh