Sequence Corner

Development Genes and Evolution

, Volume 217, Issue 1, pp 63-72

Rel homology domain-containing transcription factors in the cnidarian Nematostella vectensis

  • James C. SullivanAffiliated withDepartment of Biology, Boston University
  • , Demetrios KalaitzidisAffiliated withHematology–Oncology/Cancer Biology Program, Beth Israel Deaconess Medical Center, Harvard Medical School
  • , Thomas D. GilmoreAffiliated withDepartment of Biology, Boston University
  • , John R. FinnertyAffiliated withDepartment of Biology, Boston University Email author 

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The Rel/NF-κB and NFAT families of transcription factors are related through an N-terminal DNA-binding domain called the Rel Homology domain (RHD). Neither the RHD nor the NF-κB pathway has been identified in a basal (i.e., nonbilaterian) animal phylum. Using genomic and cDNA databases, we have identified two RHD domain-containing proteins from the cnidarian Nematostella vectensis: an NF-κB-like protein (Nv-NF-κB) and an NFAT-like protein (Nv-NFAT). The gene structure and RHD predicted amino acid sequence of Nv-nfkb are similar to those of the vertebrate NF-κB p50/p52 proteins, whereas the sequence of Nv-NFAT allows only ambiguous assignment to the NFAT family. Nv-NF-κB lacks the C-terminal IκB-like sequences present in all other NF-κB proteins. There are, however, two IκB-like genes in Nematostella encoded by loci distinct from Nv-nfkb. The separate nfkb and ikb genes of Nematostella may reflect the ancestral metazoan condition, suggesting that a gene fusion event created the nfkb genes in Drosophila and vertebrates. Nematostella also has genes that encode upstream and downstream components of the vertebrate NF-κB signaling pathway. Upstream components include Toll- and tumor necrosis-like receptors and ligands, adaptor proteins (Trafs, Myd88), caspases, and a TBK-like kinase. Downstream components include the NF-κB coactivator protein Bcl-3 and several NF-κB target genes. These results demonstrate that RHD-containing transcription factors and associated pathways are evolutionarily more ancient than previously known. Moreover, they suggest models for the evolutionary diversification of the insect and vertebrate Rel/NF-κB/IκB and NFAT gene families and suggest that cnidarians possess an NF-κB-regulated developmental or stress response pathway.


NF-kappaB NFAT IkappaB Rel homology domain Evolution