Skip to main content
Log in

The impact of finger counting habits on arithmetic in adults and children

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Here, we explored the impact of finger counting habits on arithmetic in both adults and children. Two groups of participants were examined, those that begin counting with their left hand (left-starters) and those that begin counting with their right hand (right-starters). For the adults, performance on an addition task in which participants added 2 two-digit numbers was compared. The results revealed that left-starters were slower than right-starters when adding and they had lower forward and backward digit-span scores. The children (aged 5–12) showed similar results on a single-digit timed addition task—right-starters outperformed left-starters. However, the children did not reveal differences in working memory or verbal and non-verbal intelligence as a function of finger counting habit. We argue that the motor act of finger counting influences how number is represented and suggest that left-starters may have a more bilateral representation that accounts for the slower processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aglioti, S., Berlucchi, G., Pallini, R., Rossi, G. F., & Tassinari, G. (1993). Hemispheric control of unilateral and bilateral responses to lateralized light stimuli after Callosotomy and in Callosal Agenesis. Exp Brain Res, 95, 151–165.

    Article  PubMed  Google Scholar 

  • Alibali, M. W., & DiRusso, A. A. (1999). The function of gesture in learning to count: more than keeping track. Cognitive Development, 14(1), 37–56.

    Article  Google Scholar 

  • Andres, M., Seron, X., & Olivier, E. (2007). Contribution of hand motor circuits to counting. Journal of Cognitive Neuroscience, 19, 563–576.

    Article  PubMed  Google Scholar 

  • Butler, A.J. & James, K.H. (under review). Unisensory and multisensory recognition of actively vs. passively learned audiovisual associations.

  • Butterworth, B. (1999). A head for figures. Science (New York, NY), 284(5416), 928.

  • Butterworth, B. (2005). The development of arithmetical abilities. J Child Psychol Psychiatry, 46(1), 3–18.

    Article  PubMed  Google Scholar 

  • Cantlon, J. F., & Brannon, E. M. (2007). Adding up the effects of cultural experience on the brain. Trends in Cognitive Sciences, 11(1), 1–4.

    Article  PubMed  Google Scholar 

  • Chao, L. L., & Martin, A. (2000). Representation of manipulable man-made objects in the dorsal stream. Neuroimage, 12(4), 478–484.

    Google Scholar 

  • Chochon, F., Cohen, L., van de Moortele, P. F., & Dehaene, S. (1999). Differential contributions of the left and right inferior parietal lobules to number processing. Journal of Cognitive Neuroscience, 11, 617–630.

    Article  PubMed  Google Scholar 

  • De Smedt, B., Janssen, R., Bouwens, K., Verschaffel, L., Boets, B., & Ghesquiere, P. (2009). Working memory and individual differences in mathematics achievement: a longitudinal study from first grade to second grade. J Exp Child Psychol, 103, 186–201.

    Article  PubMed  Google Scholar 

  • DeStefano, D., & LeFevre, J. A. (2004). The role of working memory in mental arithmetic. European Journal of Cognitive Psychology, 16(3), 353–386.

    Google Scholar 

  • Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. J Exp Psychol Gen, 122, 371.

    Article  Google Scholar 

  • Di Luca, S., Grana, A., Semenza, C., Seron, X., & Pesenti, M. (2006). Finger-digit compatibility in Arabic numeral processing. Quarterly Journal of Experimental Psychology, 59(9), 1648–1663.

    Article  Google Scholar 

  • Domahs, F., Krinzinger, H., & Willmes, K. (2008). Mind the gap between both hands: evidence for internal finger-based number representations in children’s mental calculation. Cortex, 44(4), 359–367.

    Google Scholar 

  • Domahs, F., Moeller, K., Huber, S., Willmes, K., & Nuerk, H.-C. (2010). Embodied numerosity: implicit hand-based representations influence symbolic number processing across cultures. Cognition, 116, 251–266.

    Article  PubMed  Google Scholar 

  • Fayol, M., & Seron, X. (2005). About numerical representations: insights from neuropsychological, experimental, and developmental studies. In I. I. D. Campbell (Ed.), Handbook of Mathematical Cognition (pp. 3–22). New York: Psychology Press.

    Google Scholar 

  • Fias, W., & Fischer, M. (2005). Spatial representation of numbers. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 43–54). New York: Psychology Press.

    Google Scholar 

  • Fischer, M. (2008). Finger counting habits modulate spatial-numerical associations. Cortex, 44(4), 386–392.

    Article  PubMed  Google Scholar 

  • Fuson, K. C. (1982). An analysis of the counting-on solution procedure in addition (pp. 67–81). Addition and subtraction: A cognitive perspective.

    Google Scholar 

  • Gauthier, I., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). Expertise for cars and birds recruits brain areas involved in face recognition. Nat Neurosci, 3, 191–197.

    Article  PubMed  Google Scholar 

  • Geary, D. C., Hoard, M. K., Byrd-Craven, J., & Desoto, M. (2004). Strategy choices in simple and complex addition: contributions of working memory and counting knowledge for children with mathematical disability. Journal of Experimental Child Psychology, 88, 121–151.

    Google Scholar 

  • Imbo, I., & Vandierendonck, A. (2007). The role of phonological and executive working memory resources in simple arithmetic strategies. European Journal of Cognitive Psychology, 19(6), 910–933.

    Google Scholar 

  • Imbo, I., Vandierendonck, A., & Fias, W. (2011). Passive hand movements disrupt adults’ counting strategies. Frontiers Cognition, 2, 1–5.

    Google Scholar 

  • James, K. H. (2010). Sensori-motor experience leads to changes in visual processing in the developing brain. Developmental Science, 13, 279–288.

    Article  PubMed  Google Scholar 

  • James, K. H., & Atwood, T. P. (2009). The role of sensorimotor learning in the perception of letter-like forms: tracking the causes of neural specialization for letters. Cognitive Neuropsychology, 26(1), 91–110.

    Article  PubMed  Google Scholar 

  • James, K. H., James, T. W., Jobard, G., Wong, C.-N., & Gauthier, I. (2005). Letter processing in the visual system: different activation patterns for single letters and strings. Cognitive, Affective, and Behavioral Neuroscience, 5, 452–466.

    Article  Google Scholar 

  • Kucian, K., von Aster, M., Loenneker, T., Dietrich, T., & Martin, E. (2008). Development of neural networks for exact and approximate calculation: a fMRI Study. Developmental Neuropsychology, 33(4), 447–473.

    Article  PubMed  Google Scholar 

  • LeFevre, J. A., Sadesky, G. S., & Bisanz, J. (1996). Selection of procedures in mental addition: reassessing the problem size effect in adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(1), 216.

    Google Scholar 

  • Lindemann, O., Alipour, A., & Fischer, M. (2011). Finger counting habits in middle eastern and western individuals: an online survey. J Cross Cult Psychol, 42, 566–578.

    Article  Google Scholar 

  • Lindemann, O., & Tira, M. D. (2011). Operational momentum in numerosity production judgments of multi-digit number problems. Zeitschrift für Psychologie, 219(1), 50–57.

    Article  Google Scholar 

  • National Mathematics Advisory Panel. (2008). Foundations for success: the final report of the National Mathematics Advisory Panel. Washington: US Department of Education.

    Google Scholar 

  • Newman, S. D., Willoughby, G., & Pruce, B. (2011). The effect of problem structure on problem-solving: an fMRI study of word versus number problems. Brain Res, 1410, 77–88.

    Article  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.

    Article  PubMed  Google Scholar 

  • Park, J., Hebrank, A., Polk, T. A., & Park, D. C. (2011). Neural dissociation of number from letter recognition and its relationship to parietal numerical processing. Journal of Cognitive Neuroscience, 24, 39–50.

    Article  PubMed Central  PubMed  Google Scholar 

  • Passolunghi, M. C., & Siegel, L. S. (2004). Working memory and access to numerical information in children with disability in mathematics. Journal of Experimental Child Psychology, 88(4), 348–367.

    Google Scholar 

  • Pesenti, M., Thioux, M., Seron, X., & Volder, A. D. (2000). Neuroanatomical substrates of Arabic number processing, numerical comparison, and simple addition: a PET study. Journal of Cognitive Neuroscience, 12(3), 461–479.

    Article  PubMed  Google Scholar 

  • Pinel, P., & Dehaene, S. (2010). Beyond hemispheric dominance: brain regions underlying the joint lateralization of language and arithmetic to the left hemisphere. Journal of Cognitive Neuroscience, 22(1), 48–66.

    Article  PubMed  Google Scholar 

  • Pinhas, M., & Fischer, M. H. (2008). Mental movements without magnitude? A study of spatial biases in symbolic arithmetic. Cognition, 109, 408–415.

    Article  PubMed  Google Scholar 

  • Polk, T. A., Stallcup, M., Aguirre, G. K., Alsop, D. C., D’Esposito, M., Detre, J. A., et al. (2002). Neural specialization for letter recognition. Journal of Cognitive Neuroscience, 14, 145–159.

    Article  PubMed  Google Scholar 

  • Sato, M., Cattaneo, L., Rizzolatti, G., & Gallese, V. (2007). Numbers within our hands: modulation of corticospinal excitability of hand muscles during numerical judgment. Journal of Cognitive Neuroscience, 19(4), 684–693.

    Article  PubMed  Google Scholar 

  • Sato, M., & Lalain, M. (2008). On the relationship between handedness and hand-digit mapping in finger counting. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 44(4), 393–399.

    Article  PubMed  Google Scholar 

  • Seyler, D. J., Kirk, E. P., & Ashcraft, M. H. (2003). Elementary Subtraction. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(6), 1339.

  • Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: evidence for multiple representations of numerical quantity. Psychol Sci, 14, 237–243.

    Article  PubMed  Google Scholar 

  • Soylu, F. & Newman, S. D. (2011). Is arithmetic embodied? Differential interference of sequential finger tapping on addition during a dual task paradigm. In: Proceedings of the 33rd Annual Conference of the Cognitive Science Society.

  • Tschentscher, N., Hauk, O., Fischer, M. H., & Pulvermüller, F. (2012). You can count on the motor cortex: finger counting habits modulate motor cortex activation evoked by numbers. Neuroimage, 59(4), 1–10.

    Article  Google Scholar 

  • Vandenberg, S. G. (1971). Mental rotation test. Boulder: University of Colorado.

    Google Scholar 

  • Woodcock, R. W., McGrew, K. S., & Mather, N. (2001). Woodcock-Johnson III Tests of Cognitive Abilities. Rolling Meadows: Riverside Publication.

    Google Scholar 

Download references

Acknowledgments

This research was funded by a grant from Indiana University (FRSP). I would like to thank Roy Seo, Jessica Denton, Lynnsey Cline, Galen Hartman, Priyanka Ghosh and Taylor Hurst for the assistance with data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharlene D. Newman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newman, S.D., Soylu, F. The impact of finger counting habits on arithmetic in adults and children. Psychological Research 78, 549–556 (2014). https://doi.org/10.1007/s00426-013-0505-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-013-0505-9

Keywords

Navigation