Skip to main content
Log in

Improved motor sequence retention by motionless listening

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

This study examined the effect of listening to a newly learned musical piece on subsequent motor retention of the piece. Thirty-six non-musicians were trained to play an unfamiliar melody on a piano keyboard. Next, they were randomly assigned to participate in three follow-up listening sessions over 1 week. Subjects who, during their listening sessions, listened to the same initial piece showed significant improvements in motor memory and retention of the piece despite the absence of physical practice. These improvements included increased pitch accuracy, time accuracy, and dynamic intensity of key pressing. Similar improvements, though to a lesser degree, were observed in subjects who, during their listening sessions, were distracted by another task. Control subjects, who after learning the piece had listened to nonmusical sounds, showed impaired motoric retention of the piece at 1 week from the initial acquisition day. These results imply that motor sequences can be established in motor memory without direct access to motor-related information. In addition, the study revealed that the listening-induced improvements did not generalize to the learning of a new musical piece composed of the same notes as the initial piece learned, limiting the effects to musical motor sequences that are already part of the individual’s motor repertoire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abravanel, E., & Ferguson, S. A. (1998). Observational learning and the use of retrieval information during the second and third years. Journal of Genetic Psychology, 159(4), 455–476.

    Article  PubMed  Google Scholar 

  • Aziz-Zadeh, L., Iacoboni, M., Zaidel, E., Wilson, S., & Mazziotta, J. (2004). Left hemisphere motor facilitation in response to manual action sounds. European Journal of Neuroscience, 19(9), 2609–2612.

    Article  PubMed  Google Scholar 

  • Bangert, M., & Altenmuller, E. O. (2003). Mapping perception to action in piano practice: A longitudinal DC-EEG study. BMC Neuroscience, 4, 26.

    Article  PubMed  Google Scholar 

  • Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., Hinrichs, H., et al. (2006). Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. Neuroimage, 30(3), 917–926.

    Article  PubMed  Google Scholar 

  • Bird, G., Osman, M., Saggerson, A., & Heyes, C. (2005). Sequence learning by action, observation and action observation. British Journal of Psychology, 96(Pt 3), 371–388.

    Article  PubMed  Google Scholar 

  • Bonaiuto, J., Rosta, E., & Arbib, M. (2007). Extending the mirror neuron system model, I. Audible actions and invisible grasps. Biological Cybernetics, 96(1), 9–38.

    Article  PubMed  Google Scholar 

  • Boschker, M. S., & Bakker, F. C. (2002). Inexperienced sport climbers might perceive and utilize new opportunities for action by merely observing a model. Perceptual and Motor Skills, 95(1), 3–9.

    Article  PubMed  Google Scholar 

  • Brown, J. C., Houix, O., & McAdams, S. (2001). Feature dependence in the automatic identification of musical woodwind instruments. Journal of the Acoustical Society of America, 109(3), 1064–1072.

    Article  PubMed  Google Scholar 

  • Buccino, G., Riggio, L., Melli, G., Binkofski, F., Gallese, V., & Rizzolatti, G. (2005). Listening to action-related sentences modulates the activity of the motor system: a combined TMS and behavioral study. Brain Research Cognitive Brain Research, 24(3), 355–363.

    Article  PubMed  Google Scholar 

  • Callan, D. E., Kent, R. D., Guenther, F. H., & Vorperian, H. K. (2000). An auditory-feedback-based neural network model of speech production that is robust to developmental changes in the size and shape of the articulatory system. Journal of Speech, Language, and Hearing Research, 43(3), 721–736.

    PubMed  Google Scholar 

  • Celnik, P., Stefan, K., Hummel, F., Duque, J., Classen, J., & Cohen, L. G. (2006). Encoding a motor memory in the older adult by action observation. Neuroimage, 29(2), 677–684.

    Article  PubMed  Google Scholar 

  • Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18(12), 2844–2854.

    Article  PubMed  Google Scholar 

  • Chen, J. L., Rae, C., & Watkins, K. E. (2012). Learning to play a melody: An fMRI study examining the formation of auditory–motor associations. Neuroimage, 59(2), 1200–1208.

    Article  PubMed  Google Scholar 

  • Cisek, P., & Kalaska, J. F. (2004). Neural correlates of mental rehearsal in dorsal premotor cortex. Nature, 431(7011), 993–996.

    Article  PubMed  Google Scholar 

  • Cross, E. S., Hamilton, A. F., & Grafton, S. T. (2006). Building a motor simulation de novo: Observation of dance by dancers. Neuroimage, 31(3), 1257–1267.

    Article  PubMed  Google Scholar 

  • Cross, E. S., Kraemer, D. J., Hamilton, A. F., Kelley, W. M., & Grafton, S. T. (2009). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19(2), 315–326.

    Article  PubMed  Google Scholar 

  • D’Ausilio, A., Altenmuller, E., Olivetti Belardinelli, M., & Lotze, M. (2006). Cross-modal plasticity of the motor cortex while listening to a rehearsed musical piece. European Journal of Neuroscience, 24(3), 955–958.

    Article  PubMed  Google Scholar 

  • Drake, C., & Palmer, C. (2000). Skill acquisition in music performance: Relations between planning and temporal control. Cognition, 74(1), 1–32.

    Article  PubMed  Google Scholar 

  • Drost, U. C., Rieger, M., Brass, M., Gunter, T. C., & Prinz, W. (2005). When hearing turns into playing: movement induction by auditory stimuli in pianists. Quarterly Journal of Experimental Psychology A, 58(8), 1376–1389.

    Google Scholar 

  • Ertelt, D., Small, S., Solodkin, A., Dettmers, C., McNamara, A., Binkofski, F., et al. (2007). Action observation has a positive impact on rehabilitation of motor deficits after stroke. Neuroimage, 36(Suppl 2), T164–T173.

    Article  PubMed  Google Scholar 

  • Fadiga, L., Craighero, L., Buccino, G., & Rizzolatti, G. (2002). Speech listening specifically modulates the excitability of tongue muscles: A TMS study. European Journal of Neuroscience, 15(2), 399–402.

    Article  PubMed  Google Scholar 

  • Ferrari, P. F., Maiolini, C., Addessi, E., Fogassi, L., & Visalberghi, E. (2005). The observation and hearing of eating actions activates motor programs related to eating in macaque monkeys. Behavioural Brain Research, 161(1), 95–101.

    Article  PubMed  Google Scholar 

  • Finney, S. A., & Palmer, C. (2003). Auditory feedback and memory for music performance: Sound evidence for an encoding effect. Memory & Cognition, 31(1), 51–64.

    Article  Google Scholar 

  • Fischer, M. H., & Zwaan, R. A. (2008). Embodied language: A review of the role of the motor system in language comprehension. Quarterly Journal of Experimental Psychology (Hove), 61(6), 825–850.

    Article  Google Scholar 

  • Galati, G., Committeri, G., Spitoni, G., Aprile, T., Di Russo, F., Pitzalis, S., et al. (2008). A selective representation of the meaning of actions in the auditory mirror system. Neuroimage, 40(3), 1274–1286.

    Article  PubMed  Google Scholar 

  • Gazzola, V., Aziz-Zadeh, L., & Keysers, C. (2006). Empathy and the somatotopic auditory mirror system in humans. Current Biology, 16(18), 1824–1829.

    Article  PubMed  Google Scholar 

  • Grezes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta-analysis. Human Brain Mapping, 12(1), 1–19.

    Article  PubMed  Google Scholar 

  • Harrington, D. L., Rao, S. M., Haaland, K. Y., Bobholz, J. A., Mayer, A. R., Binderx, J. R., et al. (2000). Specialized neural systems underlying representations of sequential movements. Journal of Cognitive Neuroscience, 12(1), 56–77.

    Article  PubMed  Google Scholar 

  • Haslinger, B., Erhard, P., Altenmuller, E., Schroeder, U., Boecker, H., & Ceballos-Baumann, A. O. (2005). Transmodal sensorimotor networks during action observation in professional pianists. Journal of Cognitive Neuroscience, 17(2), 282–293.

    Article  PubMed  Google Scholar 

  • Haueisen, J., & Knosche, T. R. (2001). Involuntary motor activity in pianists evoked by music perception. Journal of Cognitive Neuroscience, 13(6), 786–792.

    Article  PubMed  Google Scholar 

  • Hauk, O., Shtyrov, Y., & Pulvermuller, F. (2006). The sound of actions as reflected by mismatch negativity: Rapid activation of cortical sensory-motor networks by sounds associated with finger and tongue movements. European Journal of Neuroscience, 23(3), 811–821.

    Article  PubMed  Google Scholar 

  • Hickok, G., Buchsbaum, B., Humphries, C., & Muftuler, T. (2003). Auditory–motor interaction revealed by fMRI: Speech, music, and working memory in area Spt. Journal of Cognitive Neuroscience, 15(5), 673–682.

    PubMed  Google Scholar 

  • Hickok, G., Houde, J., & Rong, F. (2011). Sensorimotor integration in speech processing: Computational basis and neural organization. Neuron, 69(3), 407–422.

    Article  PubMed  Google Scholar 

  • Hlustik, P., Solodkin, A., Noll, D. C., & Small, S. L. (2004). Cortical plasticity during three-week motor skill learning. Journal of Clinical Neurophysiology, 21(3), 180–191.

    Article  PubMed  Google Scholar 

  • Hommel, B., Musseler, J., Aschersleben, G., & Prinz, W. (2001). The Theory of Event Coding (TEC): A framework for perception and action planning. Behav Brain Sci, 24(5), 849–878. (discussion 878–937).

    Article  PubMed  Google Scholar 

  • Huang, C. T., & Charman, T. (2005). Gradations of emulation learning in infants’ imitation of actions on objects. Journal of Experimental Child Psychology, 92(3), 276–302.

    Article  PubMed  Google Scholar 

  • Hund-Georgiadis, M., & von Cramon, D. Y. (1999). Motor-learning-related changes in piano players and non-musicians revealed by functional magnetic-resonance signals. Experimental Brain Research, 125(4), 417–425.

    Article  Google Scholar 

  • Janelle, C. M., Champenoy, J. D., Coombes, S. A., & Mousseau, M. B. (2003). Mechanisms of attentional cueing during observational learning to facilitate motor skill acquisition. Journal of Sports Sciences, 21(10), 825–838.

    Article  PubMed  Google Scholar 

  • Jones, J. A., & Munhall, K. G. (2005). Remapping auditory–motor representations in voice production. Current Biology, 15(19), 1768–1772.

    Article  PubMed  Google Scholar 

  • Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377(6545), 155–158.

    Article  PubMed  Google Scholar 

  • Keller, P. E., & Koch, I. (2008). Action planning in sequential skills: Relations to music performance. Quarterly Journal of Experimental Psychology (Colchester), 61(2), 275–291.

    Article  Google Scholar 

  • Kelly, A. M., & Garavan, H. (2005). Human functional neuroimaging of brain changes associated with practice. Cerebral Cortex, 15(8), 1089–1102.

    Article  PubMed  Google Scholar 

  • Keysers, C., Kohler, E., Umilta, M. A., Nanetti, L., Fogassi, L., & Gallese, V. (2003). Audiovisual mirror neurons and action recognition. Experimental Brain Research, 153(4), 628–636.

    Article  Google Scholar 

  • Koelsch, S. (2005). Neural substrates of processing syntax and semantics in music. Current Opinion in Neurobiology, 15(2), 207–212.

    Article  PubMed  Google Scholar 

  • Kohler, E., Keysers, C., Umilta, M. A., Fogassi, L., Gallese, V., & Rizzolatti, G. (2002). Hearing sounds, understanding actions: Action representation in mirror neurons. Science, 297(5582), 846–848.

    Article  PubMed  Google Scholar 

  • Kristeva, R., Chakarov, V., Schulte-Monting, J., & Spreer, J. (2003). Activation of cortical areas in music execution and imagining: A high-resolution EEG study. Neuroimage, 20(3), 1872–1883.

    Article  PubMed  Google Scholar 

  • Lahav, A., Boulanger, A., Schlaug, G., & Saltzman, E. (2005). The power of listening: auditory–motor interactions in musical training. Annals of the New York Academy of Sciences, 1060, 189–194.

    Article  PubMed  Google Scholar 

  • Lahav, A., Saltzman, E., & Schlaug, G. (2007). Action representation of sound: Audiomotor recognition network while listening to newly acquired actions. Journal of Neuroscience, 27(2), 308–314.

    Article  PubMed  Google Scholar 

  • Landau, S. M., & D’Esposito, M. (2006). Sequence learning in pianists and nonpianists: An fMRI study of motor expertise. Cognitive, Affective, & Behavioral Neuroscience, 6(3), 246–259.

    Article  Google Scholar 

  • Maestre, E. (2011). Synthesis of bowing controls applied to violin sound generation. Journal of the Acoustical Society of America, 130(4), 2431.

    Article  Google Scholar 

  • Mandell, J., Schulze, K., & Schlaug, G. (2007). Congenital amusia: An auditory–motor feedback disorder? Restorative Neurology and Neuroscience, 25(3–4), 323–334.

    PubMed  Google Scholar 

  • Masters, R. S., Lo, C. Y., Maxwell, J. P., & Patil, N. G. (2008). Implicit motor learning in surgery: Implications for multi-tasking. Surgery, 143(1), 140–145.

    Article  PubMed  Google Scholar 

  • Mattar, A. A., & Gribble, P. L. (2005). Motor learning by observing. Neuron, 46(1), 153–160.

    Article  PubMed  Google Scholar 

  • Meister, I. G., Krings, T., Foltys, H., Boroojerdi, B., Muller, M., Topper, R., et al. (2004). Playing piano in the mind—An fMRI study on music imagery and performance in pianists. Brain Research Cognitive Brain Research, 19(3), 219–228.

    Article  PubMed  Google Scholar 

  • Meyer, R. K., & Palmer, C. (2003). Temporal and motor transfer in music performance. Music Perception, 21(1), 81–104.

    Article  Google Scholar 

  • Mottonen, R., & Watkins, K. E. (2009). Motor representations of articulators contribute to categorical perception of speech sounds. Journal of Neuroscience, 29(31), 9819–9825.

    Article  PubMed  Google Scholar 

  • Muller, R. A., Kleinhans, N., Pierce, K., Kemmotsu, N., & Courchesne, E. (2002). Functional MRI of motor sequence acquisition: Effects of learning stage and performance. Brain Research Cognitive Brain Research, 14(2), 277–293.

    Article  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113.

    Article  PubMed  Google Scholar 

  • Palmer, C., & Meyer, R. K. (2000). Conceptual and motor learning in music performance. Psychological Science, 11(1), 63–68.

    Article  PubMed  Google Scholar 

  • Parlitz, D., Peschel, T., & Altenmuller, E. (1998). Assessment of dynamic finger forces in pianists: Effects of training and expertise. Journal of Biomechanics, 31(11), 1063–1067.

    Article  PubMed  Google Scholar 

  • Patuzzo, S., Fiaschi, A., & Manganotti, P. (2003). Modulation of motor cortex excitability in the left hemisphere during action observation: a single- and paired-pulse transcranial magnetic stimulation study of self- and non-self-action observation. Neuropsychologia, 41(9), 1272–1278.

    Article  PubMed  Google Scholar 

  • Pfordresher, P. Q., Keller, P. E., Koch, I., Palmer, C., & Yildirim, E. (2011). Activation of learned action sequences by auditory feedback. Psychonomic Bulletin & Review, 18(3), 544–549.

    Article  Google Scholar 

  • Pfordresher, P. Q., & Palmer, C. (2006). Effects of hearing the past, present, or future during music performance. Perception and Psychophysics, 68(3), 362–376.

    Article  PubMed  Google Scholar 

  • Pizzamiglio, L., Aprile, T., Spitoni, G., Pitzalis, S., Bates, E., D’Amico, S., et al. (2005). Separate neural systems for processing action- or non-action-related sounds. Neuroimage, 24(3), 852–861.

    Article  PubMed  Google Scholar 

  • Placidi, G. (2007). A smart virtual glove for the hand telerehabilitation. Computers in Biology and Medicine, 37(8), 1100–1107.

    Article  PubMed  Google Scholar 

  • Prather, J. F., Peters, S., Nowicki, S., & Mooney, R. (2008). Precise auditory-vocal mirroring in neurons for learned vocal communication. Nature, 451(7176), 305–310.

    Article  PubMed  Google Scholar 

  • Prinz, W. (1984). Modes of linkage between perception and action. In W. Prinz & A. F. Sanders (Eds.), Cognition and motor processes (pp. 185–193). Berlin: Springer.

  • Pulvermuller, F., Huss, M., Kherif, F., del Prado, Moscoso, Martin, F., Hauk, O., et al. (2006). Motor cortex maps articulatory features of speech sounds. Proceedings of the National Academy of Sciences of the United States of America, 103(20), 7865–7870.

    Article  PubMed  Google Scholar 

  • Rogalsky, C., Rong, F., Saberi, K., & Hickok, G. (2011). Functional anatomy of language and music perception: temporal and structural factors investigated using functional magnetic resonance imaging. Journal of Neuroscience, 31(10), 3843–3852.

    Article  PubMed  Google Scholar 

  • Roy, A. C., Craighero, L., Fabbri-Destro, M., & Fadiga, L. (2008). Phonological and lexical motor facilitation during speech listening: a transcranial magnetic stimulation study. Journal of Physiology Paris, 102(1–3), 101–105.

    Article  Google Scholar 

  • Schmuckler, M. A. (1999). Testing models of melodic contour similarity. Music Perception, 16(3), 295–326.

    Article  Google Scholar 

  • Schmuckler, M. A. (2010). Melodic contour similarity using folk melodies. Music Perception, 28(2), 169–193.

    Article  Google Scholar 

  • Schutz-Bosbach, S., & Prinz, W. (2007). Perceptual resonance: Action-induced modulation of perception. Trends in Cognitive Sciences, 11(8), 349–355.

    Article  PubMed  Google Scholar 

  • Shahin, A. J. (2011). Neurophysiological influence of musical training on speech perception. Front Psychol, 2, 126.

  • Song, S., Howard, J. H, Jr, & Howard, D. V. (2008). Perceptual sequence learning in a serial reaction time task. Experimental Brain Research, 189(2), 145–158.

    Article  Google Scholar 

  • Trimarchi, P. D., & Luzzatti, C. (2011). Implicit chord processing and motor representation in pianists. Psychological Research, 75(2), 122–128.

    Google Scholar 

  • Watkins, K. E., Strafella, A. P., & Paus, T. (2003). Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia, 41(8), 989–994.

    Article  PubMed  Google Scholar 

  • Wilson, S. M., Saygin, A. P., Sereno, M. I., & Iacoboni, M. (2004). Listening to speech activates motor areas involved in speech production. Nature Neuroscience, 7(7), 701–702.

    Article  PubMed  Google Scholar 

  • Wong, P. C., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10(4), 420–422.

    PubMed  Google Scholar 

  • Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: Auditory–motor interactions in music perception and production. Nature Reviews Neuroscience, 8(7), 547–558.

    Article  PubMed  Google Scholar 

  • Zatorre, R. J., & Halpern, A. R. (2005). Mental concerts: Musical imagery and auditory cortex. Neuron, 47(1), 9–12.

    Article  PubMed  Google Scholar 

  • Zetou, E., Tzetzis, G., Vernadakis, N., & Kioumourtzoglou, E. (2002). Modeling in learning two volleyball skills. Perceptual and Motor Skills, 94(3 Pt 2), 1131–1142.

    PubMed  Google Scholar 

  • Zmigrod, S., & Hommel, B. (2009). Auditory event files: Integrating auditory perception and action planning. Attention Perception Psychophysics, 71(2), 352–362.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the NIH (R01-DC-03663) (to E.S.) and Dudley Allen Sargent Research Fund (to A.L.). We thank Wendy Lou for assisting with data collection, Daniel Segre for data analysis and figure preparation, and Brian Arnold for assisting with the contour similarity test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Lahav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahav, A., Katz, T., Chess, R. et al. Improved motor sequence retention by motionless listening. Psychological Research 77, 310–319 (2013). https://doi.org/10.1007/s00426-012-0433-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-012-0433-0

Keywords

Navigation