Planta

, Volume 211, Issue 5, pp 648–655

A freezing-sensitive mutant of Arabidopsis, frs1, is a new aba3 allele

  • Francisco Llorente
  • Juan C. Oliveros
  • José M. Martínez-Zapater
  • Julio Salinas

DOI: 10.1007/s004250000340

Cite this article as:
Llorente, F., Oliveros, J., Martínez-Zapater, J. et al. Planta (2000) 211: 648. doi:10.1007/s004250000340

Abstract.

To investigate the molecular mechanisms controlling the process of cold acclimation and to identify genes involved in plant freezing tolerance, mutations that impaired the cold acclimation capability of Arabidopsis thaliana (L.) Heynh. were screened for. A new mutation, frs1 (freezing sensitive 1), that reduced both the constitutive freezing tolerance as well as the freezing tolerance of Arabidopsis after cold acclimation was characterized. This mutation also produced a wilty phenotype and excessive water loss. Plants with the frs1 mutation recovered their wild-type phenotype, their capability to tolerate freezing temperatures and their capability to retain water after an exogenous abscisic acid (ABA) treatment. Measurements of ABA revealed that frs1 mutants were ABA deficient, and complementation tests indicated that frs1 mutation was a new allele of the ABA3 locus showing that a mutation in this locus leads to an impairment of freezing tolerance. These results constitute the first report showing that a mutation in ABA3 leads to an impairment of freezing tolerance, and not only strengthen the conclusion that ABA is required for full development of freezing tolerance in cold-acclimated plants, but also demonstrate that ABA mediates the constitutive freezing tolerance of Arabidopsis. Gene expression in frs1 mutants was altered in response to dehydration, suggesting that freezing tolerance in Arabidopsis depends on ABA-regulated proteins that allow plants to survive the challenges imposed by subzero temperatures, mainly freeze-induced cellular dehydration.

Key words: Abscisic acid –Arabidopsis (mutant frs1) – Cold acclimation – Dehydration – Freezing tolerance –frs1 mutant 

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Francisco Llorente
    • 1
  • Juan C. Oliveros
    • 1
  • José M. Martínez-Zapater
    • 1
  • Julio Salinas
    • 1
  1. 1.Departamento de Mejora Genética y Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Carretera de la Coruña, Km. 7, E-28040 Madrid, SpainES

Personalised recommendations