, Volume 211, Issue 5, pp 701-707

Fructan accumulation induced by nitrogen deficiency in barley leaves correlates with the level of sucrose:fructan 6-fructosyltransferase mRNA

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


 Hydroponically cultivated barley plants were exposed to nitrogen (N)-deficiency followed by N-resupply. Metabolic and genetic regulation of fructan accumulation in the leaves were investigated. Fructan accumulated in barley leaves under N-deficiency was mobilized during N-resupply. The enhanced total activity of fructan-synthesizing enzymes, sucrose:sucrose 1-fructosyltransferase (EC and sucrose:fructan 6-fructosyltransferase (6-SFT; EC caused by N-deficiency decreased with the mobilization of fructan during N-resupply. The activity of the barley fructan-degrading enzyme, fructan exohydrolyase (EC was less affected by the N status. The low level of foliar soluble acid invertase activity under N-deficiency conditions was maintained during the commencement of N-resupply but increased subsequently. Further analyses by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, western blot and northern blot demonstrated that the fructan accumulation and the total activity of fructan-synthesizing enzymes correlated with the 6-SFT mRNA level. We suggest that the changes in fructan levels under N stress are intimately connected with the regulation of fructan synthetic rate which is mostly controlled by 6-SFT.

Received: 25 October 1999 / Accepted: 15 February 2000