Skip to main content
Log in

Emerging technologies for non-invasive quantification of physiological oxygen transport in plants

  • Emerging Technologies
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Oxygen plays a critical role in plant metabolism, stress response/signaling, and adaptation to environmental changes (Lambers and Colmer, Plant Soil 274:7–15, 2005; Pitzschke et al., Antioxid Redox Signal 8:1757–1764, 2006; Van Breusegem et al., Plant Sci 161:405–414, 2001). Reactive oxygen species (ROS), by-products of various metabolic pathways in which oxygen is a key molecule, are produced during adaptation responses to environmental stress. While much is known about plant adaptation to stress (e.g., detoxifying enzymes, antioxidant production), the link between ROS metabolism, O2 transport, and stress response mechanisms is unknown. Thus, non-invasive technologies for measuring O2 are critical for understanding the link between physiological O2 transport and ROS signaling. New non-invasive technologies allow real-time measurement of O2 at the single cell and even organelle levels. This review briefly summarizes currently available (i.e., mainstream) technologies for measuring O2 and then introduces emerging technologies for measuring O2. Advanced techniques that provide the ability to non-invasively (i.e., non-destructively) measure O2 are highlighted. In the near future, these non-invasive sensors will facilitate novel experimentation that will allow plant physiologists to ask new hypothesis-driven research questions aimed at improving our understanding of physiological O2 transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe Y, Sakairi T, Kajiyama H, Shrivastav S, Beeson C, Kopp JB (2010) Bioenergetic characterization of mouse podocytes. Am J Physiol Cell Physiol 299:C464–C476

    Article  CAS  PubMed  Google Scholar 

  • Ahmad R, Kuppusamy P (2010) Theory, instrumentation, and applications of electron paramagnetic resonance oximetry. Chem Rev 110:3212–3236

    Article  CAS  PubMed  Google Scholar 

  • Ahn CH, Choi JW, Beaucage G, Nevin JH, Lee JB, Puntambekar A, Lee JY (2004) Disposable smart lab on a chip for point-of-care clinical diagnostics. Proc IEEE 92:154–173

    Article  CAS  Google Scholar 

  • Alderman J, Hynes J, Floyd SM, Krüger J, O’Connor R, Papkovsky DB (2004) A low-volume platform for cell-respirometric screening based on quenched-luminescence oxygen sensing. Biosens Bioelectron 19:1529–1535

    Article  CAS  PubMed  Google Scholar 

  • Alimohammadi M, Xu Y, Wang D, Biris AS, Khodakovskaya MV (2011) Physiological responses induced in tomato plants by a two-component nanostructural system composed of carbon nanotubes conjugated with quantum dots and its in vivo multimodal detection. Nanotechnology 22(29):295101

    Article  PubMed  CAS  Google Scholar 

  • Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52

    Article  CAS  PubMed  Google Scholar 

  • Anker JN, Kopelman R (2003) Magnetically modulated optical nanoprobes. Appl Phys Lett 82:1102–1104

    Article  CAS  Google Scholar 

  • Armstrong W, Webb T, Darwent M, Beckett PM (2009) Measuring and interpreting respiratory critical oxygen pressures in roots. Ann Bot 103:281–293

    Article  PubMed  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Ann Rev Plant Biol 59:313–339

    Article  CAS  Google Scholar 

  • Behrend CJ, Anker JN, McNaughton BH, Brasuel M, Philbert MA, Kopelman R (2004) Metal-capped brownian and magnetically modulated optical nanoprobes (MOONs): micromechanics in chemical and biological microenvironments. J Phys Chem B 108:10408–10414

    Article  CAS  Google Scholar 

  • Bewley JD (1994) Seeds: physiology of development and germination. Plenum Press, New York

    Google Scholar 

  • Borisjuk L, Rolletschek H (2009) The oxygen status of the developing seed. New Phytol 182:17–30

    Article  CAS  PubMed  Google Scholar 

  • Borisjuk L, Macherel D, Benamar A, Wobus U, Rolletschek H (2007) Low oxygen sensing and balancing in plant seeds: a role for nitric oxide. New Phytol 176:813–823

    Article  CAS  PubMed  Google Scholar 

  • Borisov SM, Klimant I (2007) Ultrabright oxygen optodes based on cyclometalated iridium(III) coumarin complexes. Anal Chem 79:7501–7509

    Article  CAS  PubMed  Google Scholar 

  • Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435:297–312

    Article  CAS  PubMed  Google Scholar 

  • Buck SM, Xu H, Brasuel M, Philbert MA, Kopelman R (2004) Nanoscale probes encapsulated by biologically localized embedding (PEBBLEs) for ion sensing and imaging in live cells. Talanta 63:41–59

    Article  CAS  PubMed  Google Scholar 

  • Carraway ER, Demas JN, Degraff BA, Bacon JR (1991) Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes. Anal Chem 63:337–342

    Article  CAS  Google Scholar 

  • Chan WC, Maxwell DJ, Gao XH, Bailey RE, Han MY, Nie SM (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46

    Article  CAS  PubMed  Google Scholar 

  • Chatni MR, Porterfield DM (2009) Self-referencing optrode technology for non-invasive real-time measurement of biophysical flux and physiological sensing. Analyst 134:2224–2232

    Article  CAS  PubMed  Google Scholar 

  • Chatni MR, Li G, Porterfield DM (2009a) Frequency-domain fluorescence lifetime optrode system design and instrumentation without a concurrent reference light-emitting diode. Appl Opt 48:5528–5536

    Article  CAS  PubMed  Google Scholar 

  • Chatni MR, Maier DE, Porterfield DM (2009b) Evaluation of microparticle materials for enhancing the performance of fluorescence lifetime based optrodes. Sens Actuators B Chem 141:471–477

    Article  CAS  Google Scholar 

  • Claussen JC, Franklin AD, ul Haque A, Porterfield DM, Fisher TS (2009) Electrochemical biosensor of nanocube-augmented carbon nanotube networks. ACS Nano 3:37–44

    Article  CAS  PubMed  Google Scholar 

  • Claussen JC, Artiles MS, McLamore ES, Mohanty S, Shi J, Rickus JL, Fisher TS, Porterfield DM (2011) Electrochemical glutamate biosensing with nanocube and nanosphere augmented single-walled carbon nanotube networks: a comparative study. J Mater Chem 21:11224–11231

    Article  CAS  Google Scholar 

  • Claussen JC, Kumar A, Jaroch DB, Khawaja MH, Hibbard AB, Porterfield DM, Fisher TS (2012) Nanostructuring platinum nanoparticles on multilayered graphene petal nanosheets for electrochemical biosensing. Adv Funct Mater 22:3399–3405

    Article  CAS  Google Scholar 

  • Cloutier M, Chen J, Tatge F, McMurray-Beaulieu V, Perrier M, Jolicoeur M (2009) Kinetic metabolic modelling for the control of plant cells cytoplasmic phosphate. J Theor Biol 259:118–131

    Article  CAS  PubMed  Google Scholar 

  • Collier BB, McShane MJ (2012) Dynamic windowing algorithm for the fast and accurate determination of luminescence lifetimes. Anal Chem 84(11):4725–4731

    Article  CAS  PubMed  Google Scholar 

  • Collier BB, Singh S, McShane M (2011) Microparticle ratiometric oxygen sensors utilizing near-infrared emitting quantum dots. Analyst 136:962–967

    Article  CAS  PubMed  Google Scholar 

  • Criddle RS, Breidenbach RW, Rank DR, Hopkin MS, Hansen LD (1990) Simultaneous calorimetric and respirometric measurements on plant tissues. Thermochim Acta 172:213–221

    Article  CAS  Google Scholar 

  • Cywinski PJ, Moro AJ, Stanca SE, Biskup C, Mohr GJ (2009) Ratiometric porphyrin-based layers and nanoparticles for measuring oxygen in biosamples. Sens Actuators B Chem 135:472–477

    Article  CAS  Google Scholar 

  • Dmitriev RI, Zhdanov AV, Ponomarev GV, Yashunski DV, Papkovsky DB (2010) Intracellular oxygen-sensitive phosphorescent probes based on cell-penetrating peptides. Anal Biochem 398:24–33

    Article  CAS  PubMed  Google Scholar 

  • Do J, Lee S, Han JY, Kai JH, Hong CC, Gao CA, Nevin JH, Beaucage G, Ahn CH (2008) Development of functional lab-on-a-chip on polymer for point-of-care testing of metabolic parameters. Lab Chip 8:2113–2120

    Article  CAS  PubMed  Google Scholar 

  • Dodds WK, Biggs BJF, Lowe RL (1999) Photosynthesis-irradiance patterns in benthic microalgae: variations as a function of assemblage thickness and community structure. J Phycol 35:42–53

    Article  Google Scholar 

  • Eggenberger K, Frey N, Zienicke B, Siebenbrock J, Schunck T, Fischer R, Bräse S, Birtalan E, Nann T, Nick P (2010) Use of nanoparticles to study and manipulate plant cells. Adv Eng Mater 12:B406–B412

    Article  CAS  Google Scholar 

  • Etxeberria E, Gonzalez P, Baroja-Fernandez E, Romero JP (2006) Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant Signal Behav 1:196–200

    Article  PubMed  Google Scholar 

  • Fercher A, Borisov SM, Zhdanov AV, Klimant I, Papkovsky DB (2011) Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles. ACS Nano 5:5499–5508

    Article  CAS  PubMed  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422(6930):442–446

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Zabalza A, Van Dongen JT (2009) Regulation of respiration when the oxygen availability changes. Physiol Plant 137:383–391

    Article  CAS  PubMed  Google Scholar 

  • Gurumurthy S, Xie SZ, Alagesan B, Kim J, Yusuf RZ, Saez B, Tzatsos A, Ozsolak F, Milos P, Ferrari F, Park PJ, Shirihai OS, Scadden DT, Bardeesy N (2010) The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468:659–663

    Article  CAS  PubMed  Google Scholar 

  • Hannah W, Thompson PB (2008) Nanotechnology, risk and the environment: a review. J Environ Monit 10:291

    Article  CAS  PubMed  Google Scholar 

  • Hardin P (2000) From biological clock to biological rhythms. Genome Biol 1:1–5

    Article  Google Scholar 

  • Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165–172

    Article  PubMed  Google Scholar 

  • Holdaway-Clarke TL, Hepler PK (2003) Control of pollen tube growth: role of ion gradients and fluxes. New Phytol 159:539–563

    Article  CAS  Google Scholar 

  • Hoshino A, Hanada S, Yamamoto K (2011) Toxicity of nanocrystal quantum dots: the relevance of surface modifications. Arch Toxicol 85(7):707–720

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Bai X, Wang Y, Jin W, Zhang X, Hu S (2012) Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes. Anal Chem 84(8):3745–3750

    Article  CAS  PubMed  Google Scholar 

  • Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21:745–754

    Article  CAS  PubMed  Google Scholar 

  • Kader MA, Lindberg S (2010) Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav 5:233–238

    Article  PubMed  Google Scholar 

  • Kerchev PI, Fenton B, Foyer CH, Hancock RD (2012) Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant Cell Environ 35(2):441–453

    Article  CAS  PubMed  Google Scholar 

  • Kim HK, Youn BS, Shin MS, Namkoong C, Park KH, Baik JH, Kim JB, Park J-Y, Lee KU, Kim Y-B, Kim MS (2010) Hypothalamic Angptl4/Fiaf is a novel regulator of food intake and body weight. Diabetes 59(11):2772–2780

    Article  CAS  PubMed  Google Scholar 

  • Kochian LV, Shaff JE, Kühtreiber WM, Jaffe LF, Lucas WJ (1992) Use of an extracellular, ion-selective, vibrating microelectrode system for the quantification of K+, H+, and Ca2+ fluxes in maize roots and maize suspension cells. Planta 188:601–610

    Article  CAS  Google Scholar 

  • Kocincová AS, Nagl S, Arain S, Krause C, Borisov SM, Arnold M, Wolfbeis OS (2008) Multiplex bacterial growth monitoring in 24-well microplates using a dual optical sensor for dissolved oxygen and pH. Biotechnol Bioeng 100:430–438

    Article  PubMed  CAS  Google Scholar 

  • Kratasyuk VA, Esimbekova EN, Gladyshev MI, Khromichek EB, Kuznetsov AM, Ivanova EA (2001) The use of bioluminescent biotests for study of natural and laboratory aquatic ecosystems. Chemosphere 42:909–915

    Article  CAS  PubMed  Google Scholar 

  • Krihak MK, Shahriari MR (1996) Highly sensitive, all solid state fibre optic oxygen sensor based on the sol-gel coating technique. Electron Lett 32:240–242

    Article  CAS  Google Scholar 

  • Kuhl M, Jorgensen BB (1992) Spectral light measurements in microbenthic phototrophic communities with a fiber-optic microprobe coupled to a sensitive diode array detector. Limnol Oceanogr 37:1813–1823

    Article  Google Scholar 

  • Kuhl M, Polerecky L (2008) Functional and structural imaging of phototrophic microbial communities and symbioses. Aquat Microb Ecol 53:99–118

    Article  Google Scholar 

  • Küpper H, Šetlík I, Hlásek M (2004) A versatile chamber for simultaneous measurements of oxygen exchange and fluorescence in filamentous and thallous algae as well as higher plants. Photosynthetica 42:579–583

    Article  Google Scholar 

  • Lambers H, Colmer T (2005) Root physiology—from gene to function. Plant Soil 274:7–15

    Article  CAS  Google Scholar 

  • Lamboursain L, St-Onge F, Jolicoeur M (2002) A lab-built respirometer for plant and animal cell culture. Biotechnol Prog 18:1377–1386

    Article  CAS  PubMed  Google Scholar 

  • Land SC, Porterfield DM, Sanger RH, Smith PJS (1999) The self-referencing oxygen-selective microelectrode: detection of transmembrane oxygen flux from single cells. J Exp Biol 202:211–218

    CAS  PubMed  Google Scholar 

  • Lee S-K, Okura I (1997) Photostable optical oxygen sensing material: platinum tetrakis (pentafluorophenyl)porphyrin immobilized in polystyrene. Anal Commun 34:185–188

    Article  CAS  Google Scholar 

  • Lee S, They BL, Cote GL, Pishko MV (2008) Measurement of pH and dissolved oxygen within cell culture media using a hydrogel microarray sensor. Sens Actuators B Chem 128:388–398

    Article  CAS  Google Scholar 

  • Ligeza A, Wisniewska A, Subczynski WK, Tikhonov AN (1994) Oxygen production and consumption by chloroplasts in situ and in vitro as studied with microscopic spin label probes. Biochim Biophys Acta 1186:201–208

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Bhattacharya P, Rajapakse NC, Brune DE, Ke PC (2009) Effects of quantum dots adsorption on algal photosynthesis. J Phys Chem C 113:10962–10966

    Article  CAS  Google Scholar 

  • Liszkay A, Kenk B, Schopfer P (2003) Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta 217:658–667

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007

    Article  CAS  PubMed  Google Scholar 

  • Malins C, Niggemann M, MacCraith BD (2000) Multi-analyte optical chemical sensor employing a plastic substrate. Meas Sci Technol 11:1105–1110

    Article  CAS  Google Scholar 

  • Mancuso S, Boselli M (2002) Characterisation of the oxygen fluxes in the division, elongation and mature zones of Vitis roots: influence of oxygen availability. Planta 214:767–774

    Article  CAS  PubMed  Google Scholar 

  • Mancuso S, Papeschi G, Marras AM (2000) A polarographic, oxygen-selective, vibrating-microelectrode system for the spatial and temporal characterisation of transmembrane oxygen fluxes in plants. Planta 211:384–389

    Article  CAS  PubMed  Google Scholar 

  • Martin-Ortigosa S, Valenstein JS, Lin VSY, Trewyn BG, Wang K (2012) Nanotechnology meets plant sciences: gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method. Adv Funct Mater 22:3529

    Article  CAS  Google Scholar 

  • Masi E, Ciszak M, Stefano G, Renna L, Azzarello E, Pandolfi C, Mugnai S, Baluška F, Arecchi FT, Mancuso S (2009) Spatiotemporal dynamics of the electrical network activity in the root apex. Proc Natl Acad Sci 106:4048–4053

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Tsuchiya T (2006) A method to estimate practical radial oxygen loss of wetland plant roots. Plant Soil 279:119–128

    Article  CAS  Google Scholar 

  • McEvoy AK, Von Bültzingslöwen C, McDonagh C, MacCraith BD, Klimant I, Wolfbeis OS (2003) Optical sensors for application in intelligent food packaging technology. Proc SPIE (The Society of Optical Engineering) 4876:806–815

    Google Scholar 

  • McLamore ES, Porterfield DM (2011) Non-invasive tools for measuring metabolism and biophysical analyte transport: self-referencing physiological sensing. Chem Soc Rev 40:5308–5320

    Article  CAS  PubMed  Google Scholar 

  • McLamore ES, Jaroch D, Chatni MR, Porterfield DM (2010a) Self-referencing optrodes for measuring spatially resolved, real-time metabolic oxygen flux in plant systems. Planta 232:1087–1099

    Article  CAS  PubMed  Google Scholar 

  • McLamore ES, Diggs A, Calvo Marzal P, Shi J, Blakeslee JJ, Peer WA, Murphy AS, Porterfield DM (2010b) Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique. Plant J 63:1004–1016

    Article  CAS  PubMed  Google Scholar 

  • McLamore ES, Zhang W, Porterfield DM, Banks MK (2010c) Membrane-aerated biofilm proton and oxygen flux during chemical toxin exposure. Environ Sci Technol 44:7050–7057

    Article  CAS  PubMed  Google Scholar 

  • Mojovic M, Spasojevic I, Vuletic M, Vucinic Z, Bacic G (2005) An EPR spin-probe and spin-trap study of the free radicals produced by plant plasma membranes. J Serb Chem Soc 70(2):177–186

    Article  CAS  Google Scholar 

  • Molter TW, McQuaide SC, Suchorolski MT, Strovas TJ, Burgess LW, Meldrum DR, Lidstrom ME (2009) A microwell array device capable of measuring single-cell oxygen consumption rates. Sens Actuators B Chem 135:678–686

    Article  CAS  PubMed  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann N, Filser J, Miao A-J, Quigg A, Santschi P, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  PubMed  Google Scholar 

  • Newman IA (2001) Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ 24:1–14

    Article  CAS  PubMed  Google Scholar 

  • Newman I, Chen SL, Porterfield DM, Sun J (2012) Non-invasive flux measurements using microsensors: theory, limitations, and systems. Methods Mol Biol 913:101–117

    CAS  PubMed  Google Scholar 

  • O’Riordan TC, Buckley D, Ogurtsov V, O’Connor R, Papkovsky DB (2000) A cell viability assay based on monitoring respiration by optical oxygen sensing. Anal Biochem 278:221–227

    Article  PubMed  CAS  Google Scholar 

  • O’Riordan TC, Zhdanov AV, Ponomarev GV, Papkovsky DB (2007) Analysis of intracellular oxygen and metabolic responses of mammalian cells by time-resolved fluorometry. Anal Chem 79:9414–9419

    Article  PubMed  CAS  Google Scholar 

  • Ober ES, Sharp RE (1996) A microsensor for direct measurement of O2 partial pressure within plant tissues. J Exp Bot 47:447–454

    Article  CAS  Google Scholar 

  • Oppegard SC, Nam KH, Carr JR, Skaalure SC, Eddington DT (2009) Modulating temporal and spatial oxygenation over adherent cellular cultures. PLoS One 4(9):e6891. doi:10.1371/journal.pone.0006891

    Article  PubMed  CAS  Google Scholar 

  • O’Riordan TC, Soini AE, Papkovsky DB (2002) Performance evaluation of the phosphorescent porphyrin label: solid-phase immunoassay of α-fetoprotein. Anal Chem 74:5845–5850

    Article  PubMed  CAS  Google Scholar 

  • Paterson DM, Aspden RJ, Visscher PT, Consalvey M, Andres MS, Decho AW, Stolz J, Reid RP (2008) Light-dependant biostabilisation of sediments by stromatolite assemblages. PLoS One 3(9):e3176. doi:10.1371/journal.pone.0003176

    Article  PubMed  CAS  Google Scholar 

  • Pitzschke A, Forzani C, Hirt H (2006) Reactive oxygen species signaling in plants. Antioxid Redox Signal 8:1757–1764

    Article  CAS  PubMed  Google Scholar 

  • Porterfield DM (2002) The biophysical limitations in physiological transport and exchange in plants grown in microgravity. J Plant Growth Regul 21:177–190

    Article  CAS  PubMed  Google Scholar 

  • Porterfield DM (2007) Measuring metabolism and biophysical flux in the tissue, cellular and sub-cellular domains: recent developments in self-referencing amperometry for physiological sensing. Biosens Bioelectron 22:1186–1196

    Article  CAS  PubMed  Google Scholar 

  • Porterfield DM, Smith PJ (2000) Single-cell, real-time measurements of extracellular oxygen and proton fluxes from Spirogyra grevilleana. Protoplasma 212:80–88

    Article  CAS  Google Scholar 

  • Porterfield DM, Kuang AX, Smith PJS, Crispi ML, Musgrave ME (1999) Oxygen-depleted zones inside reproductive structures of Brassicaceae: implications for oxygen control of seed development. Can J Bot 77:1439–1446

    Article  CAS  PubMed  Google Scholar 

  • Presley T, Kuppusamy P, Zweier JL, Ilangovan G (2006) Electron paramagnetic resonance oximetry as a quantitative method to measure cellular respiration: a consideration of oxygen diffusion interference. Biophys J 91(12):4623–4631

    Article  CAS  PubMed  Google Scholar 

  • Queval G, Noctor G (2007) A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: application to redox profiling during Arabidopsis rosette development. Anal Biochem 363:58–69

    Article  CAS  PubMed  Google Scholar 

  • Revsbech NP, Jorgensen BB (1986) Microelectrodes—their use in microbial ecology. Adv Microb Ecol 9:293–352

    Article  Google Scholar 

  • Rijnders JGHM, Armstrong W, Darwent MJ, Blom CWPM, Voesenek LACJ (2000) The role of oxygen in submergence-induced petiole elongation in Rumex palustris: in situ measurements of oxygen in petioles of intact plants using micro-electrodes. New Phytol 147:497–504

    Article  CAS  Google Scholar 

  • Rolletschek H, Stangelmayer A, Borisjuk L (2009) Methodology and significance of microsensor-based oxygen mapping in plant seeds—an overview. Sensors 9:3218–3227

    Article  CAS  PubMed  Google Scholar 

  • Sanchez BC, Ochoa-Acuna H, Porterfield DM, Sepulveda MS (2008) Oxygen flux as an indicator of physiological stress in fathead minnow (Pimephales promelas) embryos: a real-time biomonitoring system of water quality. Environ Sci Technol 42:7010–7017

    Article  CAS  PubMed  Google Scholar 

  • Schmälzlin E, van Dongen JT, Klimant I, Marmodée B, Steup M, Fisahn J, Geigenberger P, Löhmannsröben H-G (2005) An optical multifrequency phase-modulation method using microbeads for measuring intracellular oxygen concentrations in plants. Biophys J 89:1339–1345

    Article  PubMed  CAS  Google Scholar 

  • Serrano M, Robatzek S, Torres M, Kombrink E, Somssich IE, Robinson M, Schulze-Lefert P (2007) Chemical interference of pathogen-associated molecular pattern-triggered immune responses in Arabidopsis reveals a potential role for fatty-acid synthase type ii complex-derived lipid signals. J Biol Chem 282:6803–6811

    Article  CAS  PubMed  Google Scholar 

  • Shabala L, Ross T, McMeekin T, Shabala S (2006a) Non-invasive microelectrode ion flux measurements to study adaptive responses of microorganisms to the environment. FEMS Microbiol Rev 30:472–486

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Shabala L, Gradmann D, Chen Z, Newman I, Mancuso S (2006b) Oscillations in plant membrane transport: model predictions, experimental validation, and physiological implications. J Exp Bot 57:171–184

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Shabala L, Newman I (2012) Studying membrane transport processes by non-invasive microelectrodes basic principles and methods. In: Volkov AG (ed) Plant electrophysiology: methods and cell electrophysiology. Springer-Verlag, Berlin, Heidelberg, New York, pp 167–186

    Chapter  Google Scholar 

  • Shi K, Hu WH, Dong DK, Zhou YH, Yu JQ (2007) Low O2 supply is involved in the poor growth in root-restricted plants of tomato (Lycopersicon esculentum Mill.). Environ Exp Bot 61:181–189

    Article  CAS  Google Scholar 

  • Shimamura S, Yamamoto R, Nakamura T, Shimada S, Komatsu S (2010) Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil. Ann Bot 106:277–284

    Article  PubMed  Google Scholar 

  • Steffens B, Steffen-Heins A, Sauter M (2013) Reactive oxygen species mediate growth and death in submerged plants. Front Plant Sci 4:179. doi:10.3389/fpls.2013.00179

    Article  PubMed  Google Scholar 

  • Sud D, Zhong W, Mycek M (2005) Measurement of intracellular oxygen levels using fluorescence lifetime imaging microscopy (FLIM). In: Licha K, Cubeddu R (eds) Photon migration and diffuse-light imaging II, vol 5859. Proc SPIE

  • Tschiersch H, Liebsch G, Stangelmayer A, Borisjuk L, Rolletschek H (2011) Planar oxygen sensors for non invasive imaging in experimental biology, microsensors. In: Minin I (ed). InTech. doi:10.5772/17893, ISBN: 978-953-307-170-1

  • Tschiersch H, Liebsch G, Borisjuk L, Stangelmayer A, Rolletschek H (2012) An imaging method for oxygen distribution, respiration and photosynthesis at a microscopic level of resolution. New Phytol 196:926–936

    Article  CAS  PubMed  Google Scholar 

  • Tsoi KM, Dai Q, Alman BA, Chan WC (2013) Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc Chem Res 46(3):662–671

    Article  CAS  Google Scholar 

  • Tyystjärvi E, Karunen J, Lemmetyinen H (1998) Measurement of photosynthetic oxygen evolution with a new type of oxygen sensor. Photosynth Res 56:223–227

    Article  Google Scholar 

  • ul Haque A, Chatni MR, Li G, Porterfield DM (2007) Biochips and other microtechnologies for physiomics. Expert Rev Proteomics 4:553–563

    Article  CAS  PubMed  Google Scholar 

  • Van Breusegem F, Vranova E, Dat JF, Inze D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414

    Article  Google Scholar 

  • van Dongen JT, Schurr U, Pfister M, Geigenberger P (2003) Phloem metabolism and function have to cope with low internal oxygen. Plant Physiol 131:1529–1543

    Article  PubMed  CAS  Google Scholar 

  • Verslues PE, Ober ES, Sharp RE (1998) Root growth and oxygen relations at low water potentials. Impact of oxygen availability in polyethylene glycol solutions. Plant Physiol 116:1403–1412

    Article  CAS  PubMed  Google Scholar 

  • Vigeolas H, van Dongen JT, Waldeck P, Huhn D, Geigenberger P (2003) Lipid storage metabolism is limited by the prevailing low oxygen concentrations oilseed rape. Plant Physiol 133:2048–2060

    Article  CAS  PubMed  Google Scholar 

  • Visscher PT, Stolz JF (2005) Microbial mats as bioreactors: populations, processes, and products. Palaeogeogr Palaeoclimatol Palaeoecol 219:87–100

    Article  Google Scholar 

  • Visscher PT, Beukema J, van Gemerden H (1991) In situ characterization of sediments: measurements of oxygen and sulfide profiles with a novel combined needle electrode. Limnol Oceanogr 36:1476–1480

    Article  CAS  Google Scholar 

  • Wan Y, McLamore ES, Fan L, Hao H, Porterfield DM, Zhang Z, Wang W, Xu Y Lin J (2011) Non-invasive measurement of real-time oxygen flux in plant systems with a self-referencing optrode. Protocol Exc. doi:10.1038/protex.2011.266

    Google Scholar 

  • Wang L, Acosta MA, Leach J, Carrier R (2013) Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads. Lab Chip 13:1586–1592

    Article  CAS  PubMed  Google Scholar 

  • Wolfbeis OS (2004) Fiber-optic chemical sensors and biosensors. Anal Chem 76:3269–3284

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Buck SM, Kopelman R, Philbert MA, Brasuel M, Monson E, Behrend C, Ross B, Rehemtulla A, Koo Y-EL (2005) Fluorescent PEBBLE nanosensors and nanoexplorers for real-time intracellular and biomedical applications. In: Geddes CD, Lakowicz JR (eds) Topics in Fluorescence Spectroscopy, Vol. 10, Academic/Plenum Press, pp 69–126

  • Xu Y, Sun T, Yin L-P (2006) Application of non-invasive microsensing system to simultaneously measure both H+ and O2 fluxes around the pollen tube. J Integr Plant Biol 48:823–831

    Article  CAS  Google Scholar 

  • Yi X, Hargett SR, Liu H, Frankel LK, Bricker TM (2007) The PsbP protein is required for photosystem II complex assembly/stability and photoautotrophy in arabidopsis thaliana. J Biol Chem 282:24833–24841

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:170–173

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors also acknowledge the UF Excellence Award and the IFAS Early Career Award (CRIS No. 005062) for funding (McLamore). A special thanks to PIKL (Baltimore, MD) for help with graphic images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. McLamore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaturvedi, P., Taguchi, M., Burrs, S.L. et al. Emerging technologies for non-invasive quantification of physiological oxygen transport in plants. Planta 238, 599–614 (2013). https://doi.org/10.1007/s00425-013-1926-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1926-9

Keywords

Navigation