Skip to main content
Log in

Environmental regulation of stomatal response in the Arabidopsis Cvi-0 ecotype

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The Arabidopsis Cape Verde Islands (Cvi-0) ecotype is known to differ from other ecotypes with respect to environmental stress responses. We analyzed the stomatal behavior of Cvi-0 plants, in response to environmental signals. We investigated the responses of stomatal conductance and aperture to high [CO2] in the Cvi-0 and Col-0 ecotypes. Cvi-0 showed constitutively higher stomatal conductance and more stomatal opening than Col-0. Cvi-0 stomata opened in response to light, but the response was slow. Under low humidity, stomatal opening was increased in Cvi-0 compared to Col-0. We then assessed whether low humidity affects endogenous ABA levels in Cvi-0. In response to low humidity, Cvi-0 had much higher ABA levels than Col-0. However, epidermal peels experiments showed that Cvi-0 stomata were insensitive to ABA. Measurements of organic and inorganic ions in Cvi-0 guard cell protoplasts indicated an over-accumulation of osmoregulatory anions (malate and Cl). This irregular anion homeostasis in the guard cells may explain the constitutive stomatal opening phenotypes of the Cvi-0 ecotype, which lacks high [CO2]-induced and low humidity-induced stomatal closure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

FACE:

Free air CO2 enrichment

FW:

Fresh weight

GCP:

Guard cell protoplast

g s :

Stomatal conductance

JA:

Jasmonic acid

O3 :

Ozone

RH:

Relative humidity

SA:

Salicylic acid

References

  • Aguilar I, Alamillo JM, García-Olmedo F, Rodríguez-Palenzuela P (2002) Natural variability in the Arabidopsis response to infection with Erwinia carotovora subsp. carotovora. Planta 215:205–209

    Article  PubMed  CAS  Google Scholar 

  • Alonso-Blanco C, El-Assal SE, Coupland G, Koornneef M (1998) Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. Genetics 149:749–764

    PubMed  CAS  Google Scholar 

  • Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF (1992) Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89:3736–3740

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424

    Article  PubMed  CAS  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030

    Article  PubMed  CAS  Google Scholar 

  • Bouchabke O, Chang F, Simon M, Voisin R, Pelletier G, Durand-Tardif M (2008) Natural variation in Arabidopsis thaliana as a tool for highlighting differential drought responses. PLoS ONE 3:e1705

    Article  PubMed  Google Scholar 

  • Brosché M, Merilo E, Mayer F, Pechter P, Puzõrjova I, Brader G, Kangasjärvi J, Kollist H (2010) Natural variation in ozone sensitivity among Arabidopsis thaliana accessions and its relation to stomatal conductance. Plant Cell Environ 33:914–925

    Article  PubMed  Google Scholar 

  • Chan EKF, Rowe HC, Hansen BG, Kliebenstein DJ (2010) The complex genetic architecture of the metabolome. PLoS Genet 6:e1001198

    Article  PubMed  Google Scholar 

  • Coluccio MP, Sanchez SE, Kasulin L, Yanovsky MJ, Botto JF (2011) Genetic mapping of natural variation in a shade avoidance response: ELF3 is the candidate gene for a QTL in hypocotyl growth regulation. J Exp Bot 62:167–176

    Article  PubMed  CAS  Google Scholar 

  • Cooley NM, Higgins JT, Holmes MG, Attridge TH (2001) Ecotypic differences in responses of Arabidopsis thaliana L. to elevated polychromatic UV-A and UV-B+A radiation in the natural environment: a positive correlation between UV-B+A inhibition and growth rate. J Photochem Photobiol B Biol 60:143–150

    Article  CAS  Google Scholar 

  • Gosti F, Beaudoin N, Serizet C, Webb AAR, Vartanian N, Giraudat J (1999) ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11:1897–1909

    Article  PubMed  CAS  Google Scholar 

  • Gotow K, Tanaka K, Kondo N, Kobayashi K, Syōno K (1985) Light activation of NADP-malate dehydrogenase in guard cell protoplasts from Vicia faba L. Plant Physiol 79:829–832

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Negi J, Young J, Israelsson M, Schroeder JI, Iba K (2006) Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nat Cell Biol 8:391–397

    Article  PubMed  CAS  Google Scholar 

  • Hetherington AM (2001) Guard cell signaling. Cell 107:711–714

    Article  PubMed  CAS  Google Scholar 

  • Hwang J-U, Jeon BW, Hwang Y, Lee Y (2010) Abscisic acid inactivates ROP2 GTPase and accelerates the stomatal closing movement. International workshop on plant membrane biology XV. http://www.adelaide.edu.au/iwpmb2010/abstracts/IWPMB_programme_supp.pdf

  • Kojima M, Kamada-Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, Ashikari M, Ueguchi-Tanaka M, Matsuoka M, Suzuki K, Sakakibara H (2009) Highly-sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol 50:1201–1214

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant 61:377–383

    Article  CAS  Google Scholar 

  • Kuśnierczyk A, Winge P, Midelfart H, Armbruster WS, Rossiter JT, Bones AM (2007) Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. J Exp Bot 58:2537–2552

    Article  PubMed  Google Scholar 

  • Lee M, Choi Y, Burla B, Kim Y, Jeon B, Maeshima M, Yoo J, Martinoia E, Lee Y (2008) The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nature Cell Biol 10:1217–1223

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre V, Kiani SP, Durand-Tardif M (2009) A focus on natural variation for abiotic constraints response in the model species Arabidopsis thaliana. Int J Mol Sci 10:3547–3582

    Article  PubMed  CAS  Google Scholar 

  • Léon-Kloosterziel KM, Gil MA, Ruijs GJ, Jacobsen SE, Olszewski NE, Schwartz SH, Zeevaart JAD, Koornneef M (1996) Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. Plant J 10:655–661

    Article  PubMed  Google Scholar 

  • Li J, Wang X, Watson MB, Assmann SM (2000) Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287:300–303

    Article  PubMed  CAS  Google Scholar 

  • Li P, Sioson A, Mane SP, Ulanov A, Grothaus G, Heath LS, Murali TM, Bohnert HJ, Grene R (2006) Response diversity of Arabidopsis thaliana ecotypes in elevated [CO2] in the field. Plant Mol Biol 62:593–609

    Article  PubMed  CAS  Google Scholar 

  • Li P, Ainsworth EA, Leakey ADB, Ulanov A, Lozovaya V, Ort DR, Bohnert HJ (2008) Arabidopsis transcript and metabolite profiles: ecotype-specific responses to open-air elevated [CO2]. Plant Cell Environ 31:1673–1687

    Article  PubMed  Google Scholar 

  • Lobin W (1983) The occurrence of Arabidopsis thaliana in the Cape Verde Islands. Arab Info Ser 20:119–123

    Google Scholar 

  • MacRobbie EAC (1998) Signal transduction and ion channels in guard cells. Philos Trans R Soc Lond B 353:1475–1488

    Article  CAS  Google Scholar 

  • Meyer S, Mumm P, Imes D, Endler A, Weder B, Al-Rasheid KAS, Geiger D, Marten I, Martinoia E, Hedrich R (2010) AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J 63:1054–1062

    Article  PubMed  CAS  Google Scholar 

  • Mustilli A, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    Article  PubMed  CAS  Google Scholar 

  • Nakamura RL, McKendree WL Jr, Hirsch RE, Sedbrook JC, Gaber RF, Sussman MR (1995) Expression of an Arabidopsis potassium channel gene in guard cells. Plant Physiol 109:371–374

    Article  PubMed  CAS  Google Scholar 

  • Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452:483–486

    Article  PubMed  CAS  Google Scholar 

  • Outlaw WH Jr, Du Z, Meng FX, Aghoram K, Riddle KA, Chollet R (2002) Requirements for activation of the signal-transduction network that leads to regulatory phosphorylation of leaf guard-cell phosphoenolpyruvate carboxylase during fusicoccin-stimulated stomatal opening. Arch Biochem Biophys 407:63–71

    Article  PubMed  CAS  Google Scholar 

  • Overmyer K, Brosché M, Kangasjärvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:335–342

    Article  PubMed  CAS  Google Scholar 

  • Pandey S, Wang X, Coursol SA, Assmann SM (2002) Preparation and applications of Arabidopsis thaliana guard cell protoplasts. New Phytol 153:517–526

    Article  CAS  Google Scholar 

  • Pei Z, Kuchitsu K, Ward JM, Schwarz M, Schroeder JI (1997) Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. Plant Cell 9:409–423

    Article  PubMed  CAS  Google Scholar 

  • Pepper AE, Corbett RW, Kang N (2002) Natural variation in Arabidopsis seedling photomorphogenesis reveals a likely role for TED1 in phytochrome signalling. Plant Cell Environ 25:591–600

    Article  CAS  Google Scholar 

  • Perchepied L, Balagué C, Riou C, Claudel-Renard C, Rivière N, Grezes-Besset B, Roby D (2010) Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. Mol Plant Microb Interact 23:846–860

    Article  CAS  Google Scholar 

  • Preston J, Tatematsu K, Kanno Y, Hobo T, Kimura M, Jikumaru Y, Yano R, Kamiya Y, Nambara E (2009) Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions. Plant Cell Physiol 50:1786–1800

    Article  PubMed  CAS  Google Scholar 

  • Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17:603–614

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Mori IC, Furuichi T, Munemasa S, Toyooka K, Matsuoka K, Murata Y, Yamamoto Y (2010) Closing plant stomata requires a homolog of an aluminum-activated malate transporter. Plant Cell Physiol 51:354–365

    Article  PubMed  CAS  Google Scholar 

  • Schachtman DP, Schroeder JI, Lucas WJ, Anderson JA, Gaber RF (1992) Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science 258:1654–1658

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Hagiwara S (1989) Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature 338:427–430

    Article  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627–658

    Article  PubMed  CAS  Google Scholar 

  • Takhtajan A (1986) Floristic regions of the world. University of California Press, Berkeley

    Google Scholar 

  • Ueno K, Kinoshita T, Inoue S, Emi T, Shimazaki K (2005) Biochemical characterization of plasma membrane H+-ATPase activation in guard cell protoplasts of Arabidopsis thaliana in response to blue light. Plant Cell Physiol 46:955–963

    Article  PubMed  CAS  Google Scholar 

  • Vahisalu T, Kollist H, Wang Y, Nishimura N, Chan W, Valerio G, Lamminmäki A, Brosché M, Moldau H, Desikan R, Schroeder JI, Kangasjärvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452:487–491

    Article  PubMed  CAS  Google Scholar 

  • Vavasseur A, Raghavendra AS (2005) Guard cell metabolism and CO2 sensing. New Phytol 165:665–682

    Article  PubMed  CAS  Google Scholar 

  • Yalpani N, Enyedi AJ, León J, Raskin I (1994) Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta 193:372–376

    Article  CAS  Google Scholar 

  • Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker JR, Shinozaki K (2002) ABA activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol 43:1473–1483

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Nobuharu Goto and Osamu Matsuda for their helpful discussion. We also thank Ms. Naomi Kawahara for the technical assistance. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas (No. 21114002) from the Ministry of Education, Science and Culture of Japan, and by the Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry (BRAIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koh Iba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monda, K., Negi, J., Iio, A. et al. Environmental regulation of stomatal response in the Arabidopsis Cvi-0 ecotype. Planta 234, 555–563 (2011). https://doi.org/10.1007/s00425-011-1424-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1424-x

Keywords

Navigation