, Volume 233, Issue 1, pp 49-61
Date: 02 Oct 2010

Putative dual pathway of auxin transport in organogenesis of Arabidopsis

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

In Arabidopsis, damage to the superficial acropetal polar auxin transport (PAT) inhibits generative but not vegetative organ initiation. In order to verify whether in a vegetative phase auxin can be transported to the meristem in a different way, the research on wild-type and plants with defective PAT was performed. Distance from the differentiated vascular elements to the shoot apical meristem (SAM) was measured for Arabidopsis cultured in different experimental systems. The influence of this distance on the ability to induce organogenesis as well as transport of the fluorescent dye to the SAM, and the LEAFY gene expression were analyzed. The youngest protoxylem elements were used as a marker of the vascular tissues. The distance of protoxylem to the SAM and organogenesis were interrelated. Organ initiation occurred only when protoxylem was localized near to the SAM. Experimental elongation of internodes in a vegetative rosette caused an increase in the distance between protoxylem and the SAM organogenic zone. Thus, the inhibition of organ initiation took place already during the vegetative phase. The results suggest the presence of at least two pathways of acropetal transport of auxin inducing organogenesis: one superficial way through PAT, and the second, putative one, internal through the vascular system. Possibly, organogenesis is completely blocked only when both these pathways are dysfunctional.