, Volume 224, Issue 2, pp 380-393
Date: 25 Jan 2006

Influence of the photoperiod on redox regulation and stress responses in Arabidopsis thaliana L. (Heynh.) plants under long- and short-day conditions

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Arabidopsis thaliana L. (Heynh.) plants were grown in low light (150 μmol photons m−2 s−1 and 20°C) either in short days (7.5 h photoperiod) or long days (16 h photoperiod), and then transferred into high light and low temperature (350–800 μmol photons m−2 s−1 at 12°C). Plants grown in short days responded with a rapid increase in NADP-malate dehydrogenase (EC 1.1.1.82) activation state. However, persisting overreduction revealed a new level of regulation of the malate valve. Activity measurements and Northern-blot analyses indicated that NADP-malate dehydrogenase transcript and protein levels increased within a few hours. Using macroarrays, additional changes in gene expression were identified. Transcript levels for several enzymes of glutathione metabolism and of some photosynthetic genes increased. The cellular glutathione level increased, but its redox state remained unchanged. A different situation was observed in plants grown in long-day conditions. Neither NADP-malate dehydrogenase nor glutathione content changed, but the expression of several antioxidative enzymes increased strongly. We conclude that the endogenous systems that measure day length interact with redox regulation, and override the interpretation of the signals, i.e. they redirect redox-mediated acclimation signals to allow for more efficient light usage and redox poising in short days to systems for the prevention of oxidative damages when grown under long-day conditions.