, Volume 215, Issue 2, pp 293-303

Targeting and membrane-insertion of a sunflower oleosin in vitro and in Saccharomyces cerevisiae: the central hydrophobic domain contains more than one signal sequence, and directs oleosin insertion into the endoplasmic reticulum membrane using a signal anchor sequence mechanism

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract.

A range of N- and C-terminal deletions of an oleosin from Helianthus annuus L. were used to study the endoplasmic reticulum (ER) targeting and membrane insertion of this protein both in vitro and in vivo in yeast (Saccharomyces cerevisiae). Neither the N- nor the C-terminal hydrophilic domains are important for targeting and/or membrane insertion, with all the information required for these processes located within the central hydrophobic region of the protein. However, in vitro membrane-insertion experiments suggest that these domains are important for a correct topology of the oleosin within the ER membrane. The first half of the hydrophobic central domain, flanked by the positively charged N-terminal domain, is likely to function as a type-II signal-anchor (SAII) sequence. However, in the absence of the N-terminal 26 residues of this domain, the proline-knot region and the second half of this hydrophobic domain are sufficient to direct oleosin to the ER and to allow stable (but far less efficient) integration of the protein into the membrane. Taken together, these results indicate that oleosin contains more than one domain that is capable of interacting with the signal recognition particle to direct the protein to the ER membrane.

Electronic Publication