Skip to main content
Log in

Activation of TRPV2 negatively regulates the differentiation of mouse brown adipocytes

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Transient receptor potential vanilloid 2 (TRPV2) acts as a Ca2+-permeable non-selective cation channel that has been reported to be sensitive to temperature, mechanical force, and some chemicals. We recently showed that TRPV2 is critical for maintenance of the thermogenic function of brown adipose tissue in mice. However, the involvement of TRPV2 in the differentiation of brown adipocytes remains unexplored. We found that the expression of TRPV2 was dramatically increased during the differentiation of brown adipocytes. Non-selective TRPV2 agonists (2-aminoethoxydiphenyl borate and lysophosphatidylcholine) inhibited the differentiation of brown adipocytes in a dose-dependent manner during the early stage of differentiation of brown adipocytes. The inhibition was rescued by a TRPV2-selective antagonist, SKF96365 (SKF). Mechanical force, which activates TRPV2, also inhibited the differentiation of brown adipocytes in a strength-dependent manner, and the effect was reversed by SKF. In addition, the inhibition of adipocyte differentiation by either TRPV2 ligand or mechanical stimulation was significantly smaller in the cells from TRPV2KO mice. Moreover, calcineurin inhibitors, cyclosporine A and FK506, partially reversed TRPV2 activation-induced inhibition of brown adipocyte differentiation. Thus, we conclude that TRPV2 might be involved in the modulation of brown adipocyte differentiation partially via a calcineurin pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arechaga I, Ledesma A, Rial E (2001) The mitochondrial uncoupling protein UCP1: a gated pore. IUBMB Life 52:165–73. doi:10.1080/15216540152845966

    Article  CAS  PubMed  Google Scholar 

  2. Berridge MJ (2006) Calcium microdomains: organization and function. Cell Calcium 40:405–12. doi:10.1016/j.ceca.2006.09.002

    Article  CAS  PubMed  Google Scholar 

  3. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–29. doi:10.1038/nrm1155

    Article  CAS  PubMed  Google Scholar 

  4. Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:436–41. doi:10.1038/18906

    Article  CAS  PubMed  Google Scholar 

  5. Che H, Yue J, Tse HF, Li GR (2014) Functional TRPV and TRPM channels in human preadipocytes. Pflugers Arch 466:947–59. doi:10.1007/s00424-013-1355-4

    Article  CAS  PubMed  Google Scholar 

  6. Cheung SY, Huang Y, Kwan HY, Chung HY, Yao X (2015) Activation of transient receptor potential vanilloid 3 channel (TRPV3) suppresses adipogenesis. Endocrinology. doi:10.1210/en.2014-1831, en20141831

    PubMed  Google Scholar 

  7. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–17. doi:10.1056/NEJMoa0810780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Petrocellis L, Ligresti A, Moriello AS, Allara M, Bisogno T, Petrosino S, Stott CG, Di Marzo V (2011) Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol 163:1479–94. doi:10.1111/j.1476-5381.2010.01166.x

    Article  PubMed  PubMed Central  Google Scholar 

  9. Feldmann HM, Golozoubova V, Cannon B, Nedergaard J (2009) UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 9:203–9. doi:10.1016/j.cmet.2008.12.014

    Article  CAS  PubMed  Google Scholar 

  10. Ghosh A, Greenberg ME (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268:239–47

    Article  CAS  PubMed  Google Scholar 

  11. Graham SJ, Black MJ, Soboloff J, Gill DL, Dziadek MA, Johnstone LS (2009) Stim1, an endoplasmic reticulum Ca2+ sensor, negatively regulates 3T3-L1 pre-adipocyte differentiation. Differentiation 77:239–47. doi:10.1016/j.diff.2008.10.013

    Article  CAS  PubMed  Google Scholar 

  12. Hisanaga E, Nagasawa M, Ueki K, Kulkarni RN, Mori M, Kojima I (2009) Regulation of calcium-permeable TRPV2 channel by insulin in pancreatic beta-cells. Diabetes 58:174–84. doi:10.2337/db08-0862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iwata Y, Katanosaka Y, Arai Y, Shigekawa M, Wakabayashi S (2009) Dominant-negative inhibition of Ca2+ influx via TRPV2 ameliorates muscular dystrophy in animal models. Hum Mol Genet 18:824–34. doi:10.1093/hmg/ddn408

    CAS  PubMed  Google Scholar 

  14. Juvin V, Penna A, Chemin J, Lin YL, Rassendren FA (2007) Pharmacological characterization and molecular determinants of the activation of transient receptor potential V2 channel orthologs by 2-aminoethoxydiphenyl borate. Mol Pharmacol 72:1258–68. doi:10.1124/mol.107.037044

    Article  CAS  PubMed  Google Scholar 

  15. Kanzaki M, Zhang YQ, Mashima H, Li L, Shibata H, Kojima I (1999) Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat Cell Biol 1:165–70. doi:10.1038/11086

    Article  CAS  PubMed  Google Scholar 

  16. Lin F, Ribar TJ, Means AR (2011) The Ca2+/calmodulin-dependent protein kinase kinase, CaMKK2, inhibits preadipocyte differentiation. Endocrinology 152:3668–79. doi:10.1210/en.2011-1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Link TM, Park U, Vonakis BM, Raben DM, Soloski MJ, Caterina MJ (2010) TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat Immunol 11:232–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ma S, Yu H, Zhao Z, Luo Z, Chen J, Ni Y, Jin R, Ma L, Wang P, Zhu Z, Li L, Zhong J, Liu D, Nilius B, Zhu Z (2012) Activation of the cold-sensing TRPM8 channel triggers UCP1-dependent thermogenesis and prevents obesity. J Mol Cell Biol 4:88–96. doi:10.1093/jmcb/mjs001

    Article  CAS  PubMed  Google Scholar 

  19. Mathieu RL, Casez JP, Jaeger P, Montandon A, Peheim E, Horber FF (1994) Altered body composition and fuel metabolism in stable kidney transplant patients on immuno-suppressive monotherapy with cyclosporine A. Eur J Clin Investig 24:195–200

    Article  CAS  Google Scholar 

  20. Mihara H, Boudaka A, Shibasaki K, Yamanaka A, Sugiyama T, Tominaga M (2010) Involvement of TRPV2 activation in intestinal movement through nitric oxide production in mice. J Neurosci 30:16536–44. doi:10.1523/JNEUROSCI.4426-10.2010

    Article  CAS  PubMed  Google Scholar 

  21. Monet M, Gkika D, Lehen’kyi V, Pourtier A, Vanden Abeele F, Bidaux G, Juvin V, Rassendren F, Humez S, Prevarsakaya N (2009) Lysophospholipids stimulate prostate cancer cell migration via TRPV2 channel activation. Biochim Biophys Acta 1793:528–39. doi:10.1016/j.bbamcr.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  22. Muraki K, Iwata Y, Katanosaka Y, Ito T, Ohya S, Shigekawa M, Imaizumi Y (2003) TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 93:829–38. doi:10.1161/01.RES.0000097263.10220.0C

    Article  CAS  PubMed  Google Scholar 

  23. Neal JW, Clipstone NA (2002) Calcineurin mediates the calcium-dependent inhibition of adipocyte differentiation in 3T3-L1 cells. J Biol Chem 277:49776–81. doi:10.1074/jbc.M207913200

    Article  CAS  PubMed  Google Scholar 

  24. Neal JW, Clipstone NA (2003) A constitutively active NFATc1 mutant induces a transformed phenotype in 3T3-L1 fibroblasts. J Biol Chem 278:17246–54. doi:10.1074/jbc.M300528200

    Article  CAS  PubMed  Google Scholar 

  25. Nedergaard J, Bengtsson T, Cannon B (2011) New powers of brown fat: fighting the metabolic syndrome. Cell Metab 13:238–40. doi:10.1016/j.cmet.2011.02.009

    Article  CAS  PubMed  Google Scholar 

  26. Nedergaard J, Cannon B (2010) The changed metabolic world with human brown adipose tissue: therapeutic visions. Cell Metab 11:268–72. doi:10.1016/j.cmet.2010.03.007

    Article  CAS  PubMed  Google Scholar 

  27. Nedergaard J, Ricquier D, Kozak LP (2005) Uncoupling proteins: current status and therapeutic prospects. EMBO Rep 6:917–21. doi:10.1038/sj.embor.7400532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ntambi JM, Takova T (1996) Role of Ca2+ in the early stages of murine adipocyte differentiation as evidenced by calcium mobilizing agents. Differentiation 60:151–8. doi:10.1046/j.1432-0436.1996.6030151.x

    CAS  PubMed  Google Scholar 

  29. Peralvarez-Marin A, Donate-Macian P, Gaudet R (2013) What do we know about the transient receptor potential vanilloid 2 (TRPV2) ion channel? FEBS J 280:5471–87. doi:10.1111/febs.12302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–47. doi:10.1146/annurev.physiol.68.040204.100431

    Article  CAS  PubMed  Google Scholar 

  31. Shi H, Halvorsen YD, Ellis PN, Wilkison WO, Zemel MB (2000) Role of intracellular calcium in human adipocyte differentiation. Physiol Genomics 3:75–82

    CAS  PubMed  Google Scholar 

  32. Shibasaki K (2016) Physiological significance of TRPV2 as a mechanosensor, thermosensor and lipid sensor. J Physiol Sci. doi:10.1007/s12576-016-0434-7

    PubMed  Google Scholar 

  33. Shibasaki K, Murayama N, Ono K, Ishizaki Y, Tominaga M (2010) TRPV2 enhances axon outgrowth through its activation by membrane stretch in developing sensory and motor neurons. J Neurosci 30:4601–12. doi:10.1523/JNEUROSCI.5830-09.2010

    Article  CAS  PubMed  Google Scholar 

  34. Spiegelman BM, Flier JS (1996) Adipogenesis and obesity: rounding out the big picture. Cell 87:377–89

    Article  CAS  PubMed  Google Scholar 

  35. Sun W, Uchida K, Suzuki Y, Zhou Y, Kim M, Takayama Y, Takahashi N, Goto T, Wakabayashi S, Kawada T, Iwata Y, Tominaga M (2016) Lack of TRPV2 impairs thermogenesis in mouse brown adipose tissue. EMBO Rep 17:383–399. doi:10.15252/embr.201540819

    Article  CAS  PubMed  Google Scholar 

  36. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–8. doi:10.1056/NEJMoa0808718

    Article  PubMed  Google Scholar 

  37. Varga T, Czimmerer Z, Nagy L (2011) PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta 1812:1007–22. doi:10.1016/j.bbadis.2011.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ye L, Kleiner S, Wu J, Sah R, Gupta RK, Banks AS, Cohen P, Khandekar MJ, Bostrom P, Mepani RJ, Laznik D, Kamenecka TM, Song X, Liedtke W, Mootha VK, Puigserver P, Griffin PR, Clapham DE, Spiegelman BM (2012) TRPV4 is a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis. Cell 151:96–110. doi:10.1016/j.cell.2012.08.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang LL, Yan Liu D, Ma LQ, Luo ZD, Cao TB, Zhong J, Yan ZC, Wang LJ, Zhao ZG, Zhu SJ, Schrader M, Thilo F, Zhu ZM, Tepel M (2007) Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ Res 100:1063–70. doi:10.1161/01.RES.0000262653.84850.8b

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. Yasuhiko Minokoshi, Kazuhiro Ikenaka (National Institute for Physiological Sciences), and Toshihiko Yada from Jichi Medical University for their kind discussion. We also thank Dr. Minji Kim from Kyoto University for the technical assistance.

Author contributions

W.S., K.U., and M.T. designed experiments and wrote the manuscript. W.S. performed experiments. W.S., K.U., N.T., T.G., T.K., and M.T. discussed and interpreted the data. K.U., N.T., and T.G. gave technical assistance. Y.I. and S.W. supplied TRPV2KO mice. K.U. and M.T. supervised this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kunitoshi Uchida or Makoto Tominaga.

Ethics declarations

Funding

This work was supported by grants from the Japanese Ministry of Education, Culture, Sports, Science and Technology (#15H02501) (M.T.) and Takeda Science Foundation (K.U.).

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. A1

TRPV2 is expressed in differentiated mouse brown adipocytes a and b Mean responses evoked by a TRPV2 agonist, 500 μM 2APB (a) or 30 μM LPC- (b) were blocked by a selective TRPV2 antagonist (10 μM SKF). The 1 μM NE-evoked response indicates that the examined brown adipocytes have differentiated. Iono was used to confirm cell viability. Ratio values correspond to the actual [Ca2+]i of differentiated mouse brown adipocytes. c A representative whole-cell current evoked by a TRPV2 agonist, 2APB, was inhibited by SKF in differentiated mouse brown adipocytes. A voltage ramp-pulse protocol (300 ms) is shown in the inset (upper left). Current–voltage curves of basal currents (black), currents in the presence of 2APB + SKF (blue) and currents in the presence of 2APB alone (red) at the time points of i, ii and iii, respectively, in differentiated mouse brown adipocytes are shown in the inset (upper right). d Responses of individual differentiated brown adipocytes that were evoked by a TRPV2 agonist (500 μM 2APB) in the presence or absence of 2 mM calcium. (GIF 54 kb)

High resolution image (TIF 595 kb)

Fig. A2

Expression of Trpm7 mRNA in adipocytes and representative images of mouse brown adipocytes at different stages a RT-PCR analysis of Trpm7 mRNA expression in differentiated mouse brown adipocytes. Control lane indicates the results obtained with plasmid DNA as a template. Reverse transcription (RT) lanes indicate that the samples were treated with (+) or without (−) RT. b Real-time PCR analysis of Trpm7 mRNA expression in pre-adipocytes and 6-day-differentiated brown adipocytes. Mean ± SEM, n = 6; **, P < 0.01 vs. pre-adipocytes. Unpaired Student’s t-test. c Representative phase-contrast images of mouse brown adipocytes at different stages. Scale bar indicates 100 μm. (GIF 218 kb)

High resolution image (TIF 3687 kb)

Fig. A3

Ligand-evoked responses in mouse pre-adipocytes and 6-day-differentiated brown adipocytes Individual traces of changes in [Ca2+]i in response to 1 μM capsaicin (a and b), 250 μM 2APB + 500 μM carvacrol (Carva) (c and d), 300 nM GSK (e and f) or 1 mM menthol (g and h) in pre-adipocytes (a, c, e and g) and 6-day-differentiated brown adipocytes (b, d, f and h). One μM NE was used to confirm differentiation. Five μM Iono was used to confirm cell viability. (GIF 160 kb)

High resolution image (TIF 2084 kb)

Fig. A4

Ionomycin reduced the number of differentiated mouse brown adipocytes in a dose-dependent manner a Representative images of differentiated mouse brown adipocytes after a 6-day-differentiation in differentiation medium containing different doses of Iono. Scale bar indicates 100 μm. b Dose-dependency of the Iono-induced reduction in the number of differentiated mouse brown adipocytes. Mean ± SEM, n = 6; * P <0.05 and ** P < 0.01 vs. control group. One-way ANOVA followed by 2-tailed t-test with Bonferroni correction. (GIF 122 kb)

High resolution image (TIF 2104 kb)

Fig. A5

Lack of TRPV2 facilitated brown adipocyte differentiation a Oil red O staining of 6-day-differentiated mouse brown adipocytes from wild-type (WT) and TRPV2 knockout (TRPV2KO) mice with indicated differentiation media. 1/3 suppl. indicates differentiation medium was diluted 3-fold with DMEM. Scale bar indicates 100 μm. b, c and d Comparison of the numbers of 6-day-differentiated mouse brown adipocytes (b), triglyceride levels (c) and adipocyte diameters (d) in cells from WT and TRPV2KO mice with indicated differentiation media. Mean ± SEM, n = 8; *, P < 0.05 and **, P < 0.01 vs. control group; ##, P < 0.01 vs. WT group. One-way ANOVA followed by 2-tailed t-test with Bonferroni correction. (GIF 126 kb)

High resolution image (TIF 1862 kb)

Fig. A6

Calcineurin inhibitors reversed TG-induced inhibition of mouse brown adipocyte differentiation a Representative images of Oil Red O staining of differentiated mouse brown adipocytes after 6-day-differentiation in differentiation medium containing indicated compounds. Scale bar indicates 100 μm. b and c Effects of FK506 and CsA on the numbers of 6-day-differentiated mouse brown adipocytes (b) and triglyceride levels (c) after 10 nM TG treatment. Mean ± SEM, n = 6; *, P < 0.05 and **, P < 0.01 vs. control group; #, P < 0.05 and ##, P < 0.01 vs. TG group. One-way ANOVA followed by 2-tailed t-test with Bonferroni correction. d Real-time PCR analysis of calcineurin mRNA expression in pre-adipocytes and 6-day-differentiated brown adipocytes. Mean ± SEM, n = 6. Unpaired Student’s t-test. (GIF 136 kb)

High resolution image (TIF 2017 kb)

Supplemental Table 1

(DOC 12.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Uchida, K., Takahashi, N. et al. Activation of TRPV2 negatively regulates the differentiation of mouse brown adipocytes. Pflugers Arch - Eur J Physiol 468, 1527–1540 (2016). https://doi.org/10.1007/s00424-016-1846-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1846-1

Keywords

Navigation