Skip to main content

Advertisement

Log in

Missing links in cardiology: long non-coding RNAs enter the arena

Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Heart failure as a consequence of ischemic, hypertensive, infectious, or hereditary heart disease is a major challenge in cardiology and topic of intense research. Recently, new players appeared in this field and promise deeper insights into cardiac development, function, and disease. Long non-coding RNAs are a novel class of transcripts that can regulate gene expression and may have many more functions inside the cell. Here, we present examples on long non-coding RNA (lncRNA) function in cardiac development and give suggestions on how lncRNAs may be involved in cardiomyocyte dysfunction, myocardial fibrosis, and inflammation, three hallmarks of the failing heart. Above that, we point out opportunities as well as challenges that should be considered in the endeavor to investigate cardiac lncRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS (2011) lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res 39(Database issue):D146–D151. doi:10.1093/nar/gkq1138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Barbash IM, Cecchini S, Faranesh AZ, Virag T, Li L, Yang Y, Hoyt RF, Kornegay JN, Bogan JR, Garcia L, Lederman RJ, Kotin RM (2013) MRI roadmap-guided transendocardial delivery of exon-skipping recombinant adeno-associated virus restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Gene Ther 20(3):274–282. doi:10.1038/gt.2012.38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bhartiya D, Pal K, Ghosh S, Kapoor S, Jalali S, Panwar B, Jain S, Sati S, Sengupta S, Sachidanandan C, Raghava GP, Sivasubbu S, Scaria V (2013) lncRNome: a comprehensive knowledgebase of human long noncoding RNAs. Database (Oxford). doi:10.1093/database/bat034

  4. Bovolenta M, Erriquez D, Valli E, Brioschi S, Scotton C, Neri M, Falzarano MS, Gherardi S, Fabris M, Rimessi P, Gualandi F, Perini G, Ferlini A (2012) The DMD locus harbours multiple long non-coding RNAs which orchestrate and control transcription of muscle dystrophin mRNA isoforms. PLoS ONE 7(9):e45328. doi:10.1371/journal.pone.0045328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP, Cooper PJ, Swift S, Rastan S (1992) The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71(3):515–526

    Article  CAS  PubMed  Google Scholar 

  6. Brown CJ, Hendrich BD, Rupert JL, Lafreniere RG, Xing Y, Lawrence J, Willard HF (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71(3):527–542

    Article  CAS  PubMed  Google Scholar 

  7. Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6(12):e1001233. doi:10.1371/journal.pgen.1001233

    Article  PubMed Central  PubMed  Google Scholar 

  8. Caley DP, Pink RC, Trujillano D, Carter DR (2010) Long noncoding RNAs, chromatin, and development. Sci World J 10:90–102. doi:10.1100/tsw.2010.7

    Article  CAS  Google Scholar 

  9. Cao G, Zhang J, Wang M, Song X, Liu W, Mao C, Lv C (2013) Differential expression of long non-coding RNAs in bleomycin-induced lung fibrosis. Int J Mol Med 32(2):355–364. doi:10.3892/ijmm.2013.1404

    CAS  PubMed  Google Scholar 

  10. Caretti G, Schiltz RL, Dilworth FJ, Di Padova M, Zhao P, Ogryzko V, Fuller-Pace FV, Hoffman EP, Tapscott SJ, Sartorelli V (2006) The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell 11(4):547–560. doi:10.1016/j.devcel.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  11. Carpenter S, Aiello D, Atianand MK, Ricci EP, Gandhi P, Hall LL, Byron M, Monks B, Henry-Bezy M, Lawrence JB, O'Neill LA, Moore MJ, Caffrey DR, Fitzgerald KA (2013) A long noncoding RNA mediates both activation and repression of immune response genes. Science 341(6147):789–792. doi:10.1126/science.1240925

    Article  CAS  PubMed  Google Scholar 

  12. Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, Pesce E, Ferrer I, Collavin L, Santoro C, Forrest AR, Carninci P, Biffo S, Stupka E, Gustincich S (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491(7424):454–457. doi:10.1038/nature11508

    Article  CAS  PubMed  Google Scholar 

  13. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147(2):358–369. doi:10.1016/j.cell.2011.09.028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Chen LL, Carmichael GG (2009) Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell 35(4):467–478. doi:10.1016/j.molcel.2009.06.027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Chen J, Wang DZ (2012) microRNAs in cardiovascular development. J Mol Cell Cardiol 52(5):949–957. doi:10.1016/j.yjmcc.2012.01.012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Chooniedass-Kothari S, Emberley E, Hamedani MK, Troup S, Wang X, Czosnek A, Hube F, Mutawe M, Watson PH, Leygue E (2004) The steroid receptor RNA activator is the first functional RNA encoding a protein. FEBS Lett 566(1–3):43–47. doi:10.1016/j.febslet.2004.03.104

    Article  CAS  PubMed  Google Scholar 

  17. Consortium EP, Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74. doi:10.1038/nature11247

    Article  PubMed  Google Scholar 

  18. Cordes KR, Srivastava D (2009) MicroRNA regulation of cardiovascular development. Circ Res 104(6):724–732. doi:10.1161/CIRCRESAHA.108.192872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Da Costa Martins PA, De Windt LJ (2012) MicroRNAs in control of cardiac hypertrophy. Cardiovasc Res 93(4):563–572. doi:10.1093/cvr/cvs013

    Article  PubMed  Google Scholar 

  20. Dinger ME, Pang KC, Mercer TR, Mattick JS (2008) Differentiating protein-coding and noncoding RNA: challenges and ambiguities. PLoS Comput Biol 4(11):e1000176. doi:10.1371/journal.pcbi.1000176

    Article  PubMed Central  PubMed  Google Scholar 

  21. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C et al (2012) Landscape of transcription in human cells. Nature 489(7414):101–108. doi:10.1038/nature11233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Duan M, Yao H, Hu G, Chen X, Lund AK, Buch S (2013) HIV Tat induces expression of ICAM-1 in HUVECs: implications for miR-221/-222 in HIV-associated cardiomyopathy. PloS ONE 8(3):e60170. doi:10.1371/journal.pone.0060170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874. doi:10.1038/nrg3074

    Article  CAS  PubMed  Google Scholar 

  24. Frenquelli M, Muzio M, Scielzo C, Fazi C, Scarfo L, Rossi C, Ferrari G, Ghia P, Caligaris-Cappio F (2010) MicroRNA and proliferation control in chronic lymphocytic leukemia: functional relationship between miR-221/222 cluster and p27. Blood 115(19):3949–3959. doi:10.1182/blood-2009-11-254656

    Article  CAS  PubMed  Google Scholar 

  25. Friedrichs F, Zugck C, Rauch GJ, Ivandic B, Weichenhan D, Muller-Bardorff M, Meder B, El Mokhtari NE, Regitz-Zagrosek V, Hetzer R, Schafer A, Schreiber S, Chen J, Neuhaus I, Ji R, Siemers NO, Frey N, Rottbauer W, Katus HA, Stoll M (2009) HBEGF, SRA1, and IK: three cosegregating genes as determinants of cardiomyopathy. Genome Res 19(3):395–403. doi:10.1101/gr.076653.108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Gedicke-Hornung C, Behrens-Gawlik V, Reischmann S, Geertz B, Stimpel D, Weinberger F, Schlossarek S, Precigout G, Braren I, Eschenhagen T, Mearini G, Lorain S, Voit T, Dreyfus PA, Garcia L, Carrier L (2013) Rescue of cardiomyopathy through U7snRNA-mediated exon skipping in Mybpc3-targeted knock-in mice. EMBO Mol Med 5(7):1060–1077. doi:10.1002/emmm.201202168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Graff JW, Dickson AM, Clay G, McCaffrey AP, Wilson ME (2012) Identifying functional microRNAs in macrophages with polarized phenotypes. J Biol Chem 287(26):21816–21825. doi:10.1074/jbc.M111.327031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Grote P, Wittler L, Hendrix D, Koch F, Wahrisch S, Beisaw A, Macura K, Blass G, Kellis M, Werber M, Herrmann BG (2013) The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24(2):206–214. doi:10.1016/j.devcel.2012.12.012

    Article  CAS  PubMed  Google Scholar 

  29. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227. doi:10.1038/nature07672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Haghikia A, Stapel B, Hoch M, Hilfiker-Kleiner D (2011) STAT3 and cardiac remodeling. Heart Fail Rev 16(1):35–47. doi:10.1007/s10741-010-9170-x

    Article  CAS  PubMed  Google Scholar 

  31. Hangauer MJ, Vaughn IW, McManus MT (2013) Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet 9(6):e1003569. doi:10.1371/journal.pgen.1003569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Howard PL, Dally GY, Ditta SD, Austin RC, Worton RG, Klamut HJ, Ray PN (1999) Dystrophin isoforms DP71 and DP427 have distinct roles in myogenic cells. Muscle Nerve 22(1):16–27

    Article  CAS  PubMed  Google Scholar 

  33. Hube F, Guo J, Chooniedass-Kothari S, Cooper C, Hamedani MK, Dibrov AA, Blanchard AA, Wang X, Deng G, Myal Y, Leygue E (2006) Alternative splicing of the first intron of the steroid receptor RNA activator (SRA) participates in the generation of coding and noncoding RNA isoforms in breast cancer cell lines. DNA Cell Biol 25(7):418–428. doi:10.1089/dna.2006.25.418

    Article  CAS  PubMed  Google Scholar 

  34. Hube F, Velasco G, Rollin J, Furling D, Francastel C (2011) Steroid receptor RNA activator protein binds to and counteracts SRA RNA-mediated activation of MyoD and muscle differentiation. Nucleic Acids Res 39(2):513–525. doi:10.1093/nar/gkq833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD, Golub TR, Pieske B, Pu WT (2007) Altered microRNA expression in human heart disease. Physiol Genomics 31(3):367–373. doi:10.1152/physiolgenomics.00144.2007

    Article  CAS  PubMed  Google Scholar 

  36. Ip JY, Nakagawa S (2012) Long non-coding RNAs in nuclear bodies. Develop Growth Differ 54(1):44–54. doi:10.1111/j.1440-169X.2011.01303.x

    Article  CAS  Google Scholar 

  37. Ishii N, Ozaki K, Sato H, Mizuno H, Saito S, Takahashi A, Miyamoto Y, Ikegawa S, Kamatani N, Hori M, Saito S, Nakamura Y, Tanaka T (2006) Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet 51(12):1087–1099. doi:10.1007/s10038-006-0070-9

    Article  CAS  PubMed  Google Scholar 

  38. Kapranov P, St Laurent G, Raz T, Ozsolak F, Reynolds CP, Sorensen PH, Reaman G, Milos P, Arceci RJ, Thompson JF, Triche TJ (2010) The majority of total nuclear-encoded non-ribosomal RNA in a human cell is ‘dark matter’ un-annotated RNA. BMC Biol 8:149. doi:10.1186/1741-7007-8-149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kawai J, Shinagawa A, Shibata K, Yoshino M, Itoh M, Ishii Y, Arakawa T, Hara A, Fukunishi Y, Konno H, Adachi J, Fukuda S, Aizawa K, Izawa M, Nishi K et al (2001) Functional annotation of a full-length mouse cDNA collection. Nature 409(6821):685–690. doi:10.1038/35055500

    Article  PubMed  Google Scholar 

  40. Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S, Abo R, Tabebordbar M, Lee RT, Burge CB, Boyer LA (2013) Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152(3):570–583. doi:10.1016/j.cell.2013.01.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Knoll M, Simmons S, Bouquet C, Grun JR, Melchers F (2013) miR-221 redirects precursor B cells to the BM and regulates their residence. Eur J Immunol 43(9):2497–2506. doi:10.1002/eji.201343367

    Article  CAS  PubMed  Google Scholar 

  42. Kong SW, Hu YW, Ho JW, Ikeda S, Polster S, John R, Hall JL, Bisping E, Pieske B, dos Remedios CG, Pu WT (2010) Heart failure-associated changes in RNA splicing of sarcomere genes. Circ Cardiovasc Genet 3(2):138–146. doi:10.1161/CIRCGENETICS.109.904698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Kornienko AE, Guenzl PM, Barlow DP, Pauler FM (2013) Gene regulation by the act of long non-coding RNA transcription. BMC Biol 11:59. doi:10.1186/1741-7007-11-59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921. doi:10.1038/35057062

    Article  CAS  PubMed  Google Scholar 

  45. Lanz RB, McKenna NJ, Onate SA, Albrecht U, Wong J, Tsai SY, Tsai MJ, O'Malley BW (1999) A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97(1):17–27

    Article  CAS  PubMed  Google Scholar 

  46. Latronico MV, Condorelli G (2009) MicroRNAs and cardiac pathology. Nat Rev Cardiol 6(6):419–429. doi:10.1038/nrcardio.2009.56

    Article  PubMed  Google Scholar 

  47. Leung A, Trac C, Jin W, Lanting L, Akbany A, Saetrom P, Schones DE, Natarajan R (2013) Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res 113(3):266–278. doi:10.1161/CIRCRESAHA.112.300849

    Article  CAS  PubMed  Google Scholar 

  48. Lin Q, Schwarz J, Bucana C, Olson EN (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276(5317):1404–1407

    Article  CAS  PubMed  Google Scholar 

  49. Liu N, Olson EN (2010) MicroRNA regulatory networks in cardiovascular development. Dev Cell 18(4):510–525. doi:10.1016/j.devcel.2010.03.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Makarenko I, Opitz CA, Leake MC, Neagoe C, Kulke M, Gwathmey JK, del Monte F, Hajjar RJ, Linke WA (2004) Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts. Circ Res 95(7):708–716. doi:10.1161/01.RES.0000143901.37063.2f

    Article  CAS  PubMed  Google Scholar 

  51. Mann DL (2002) Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res 91(11):988–998

    Article  CAS  PubMed  Google Scholar 

  52. Nakagawa S, Ip JY, Shioi G, Tripathi V, Zong X, Hirose T, Prasanth KV (2012) Malat1 is not an essential component of nuclear speckles in mice. Rna 18(8):1487–1499. doi:10.1261/rna.033217.112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Nakagawa S, Naganuma T, Shioi G, Hirose T (2011) Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J Cell Biol 193(1):31–39. doi:10.1083/jcb.201011110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Ohno S (1972) So much “junk” DNA in our genome. Brookhaven Symp Biol 23:366–370

    CAS  PubMed  Google Scholar 

  55. Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, Kondo S, Nikaido I, Osato N, Saito R, Suzuki H, Yamanaka I, Kiyosawa H, Yagi K, Tomaru Y, Hasegawa Y et al (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420(6915):563–573. doi:10.1038/nature01266

    Article  PubMed  Google Scholar 

  56. Pang KC, Frith MC, Mattick JS (2006) Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends in genetics : TIG 22(1):1–5. doi:10.1016/j.tig.2005.10.003

    Article  CAS  PubMed  Google Scholar 

  57. Quiat D, Olson EN (2013) MicroRNAs in cardiovascular disease: from pathogenesis to prevention and treatment. J Clin Invest 123(1):11–18. doi:10.1172/JCI62876

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H (2007) Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev 12(3–4):331–343. doi:10.1007/s10741-007-9034-1

    Article  CAS  PubMed  Google Scholar 

  59. Rapicavoli NA, Qu K, Zhang J, Mikhail M, Laberge RM, Chang HY (2013) A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. eLife 2:e00762. doi:10.7554/eLife.00762

    Article  PubMed Central  PubMed  Google Scholar 

  60. Ravasi T, Suzuki H, Pang KC, Katayama S, Furuno M, Okunishi R, Fukuda S, Ru K, Frith MC, Gongora MM, Grimmond SM, Hume DA, Hayashizaki Y, Mattick JS (2006) Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res 16(1):11–19. doi:10.1101/gr.4200206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Ritter O, Haase H, Schulte HD, Lange PE, Morano I (1999) Remodeling of the hypertrophied human myocardium by cardiac bHLH transcription factors. J Cell Biochem 74(4):551–561

    Article  CAS  PubMed  Google Scholar 

  62. Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, Sanchez-Gomez DB, Hacisuleyman E, Li E, Spence M, Liapis SC, Mallard W, Morse M, Swerdel MR, D'Ecclessis MF, Moore JC, Lai V, Gong G, Yancopoulos GD, Frendewey D, Kellis M, Hart RP, Valenzuela DM, Arlotta P, Rinn JL (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife 2:e01749. doi:10.7554/eLife.01749

    Article  PubMed Central  PubMed  Google Scholar 

  63. Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91(3):827–887. doi:10.1152/physrev.00006.2010

    Article  CAS  PubMed  Google Scholar 

  64. Schroen B, Heymans S (2009) MicroRNAs and beyond: the heart reveals its treasures. Hypertension 54(6):1189–1194. doi:10.1161/HYPERTENSIONAHA.109.133942

    Article  CAS  PubMed  Google Scholar 

  65. Schroen B, Heymans S (2012) Small but smart-microRNAs in the centre of inflammatory processes during cardiovascular diseases, the metabolic syndrome, and ageing. Cardiovasc Res 93(4):605–613. doi:10.1093/cvr/cvr268

    Article  CAS  PubMed  Google Scholar 

  66. Shi X, Sun M, Liu H, Yao Y, Song Y (2013) Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett 339(2):159–166. doi:10.1016/j.canlet.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  67. Simon MD, Pinter SF, Fang R, Sarma K, Rutenberg-Schoenberg M, Bowman SK, Kesner BA, Maier VK, Kingston RE, Lee JT (2013) High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature. doi:10.1038/nature12719

    Google Scholar 

  68. Sone M, Hayashi T, Tarui H, Agata K, Takeichi M, Nakagawa S (2007) The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J Cell Sci 120(Pt 15):2498–2506. doi:10.1242/jcs.009357

    Article  CAS  PubMed  Google Scholar 

  69. Song HK, Hong SE, Kim T, Kim do H (2012) Deep RNA sequencing reveals novel cardiac transcriptomic signatures for physiological and pathological hypertrophy. PloS ONE 7(4):e35552. doi:10.1371/journal.pone.0035552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Sucharov C, Bristow MR, Port JD (2008) miRNA expression in the failing human heart: functional correlates. J Mol Cell Cardiol 45(2):185–192. doi:10.1016/j.yjmcc.2008.04.014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Suter D, Tomasini R, Reber U, Gorman L, Kole R, Schumperli D (1999) Double-target antisense U7 snRNAs promote efficient skipping of an aberrant exon in three human beta-thalassemic mutations. Hum Mol Genet 8(13):2415–2423

    Article  CAS  PubMed  Google Scholar 

  72. Taft RJ, Pheasant M, Mattick JS (2007) The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays 29(3):288–299. doi:10.1002/bies.20544

    Article  CAS  PubMed  Google Scholar 

  73. Tijsen AJ, Pinto YM, Creemers EE (2012) Non-cardiomyocyte microRNAs in heart failure. Cardiovasc Res 93(4):573–582. doi:10.1093/cvr/cvr344

    Article  CAS  PubMed  Google Scholar 

  74. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, Blencowe BJ, Prasanth SG, Prasanth KV (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39(6):925–938. doi:10.1016/j.molcel.2010.08.011

    Article  CAS  PubMed  Google Scholar 

  75. Tsuiji H, Yoshimoto R, Hasegawa Y, Furuno M, Yoshida M, Nakagawa S (2011) Competition between a noncoding exon and introns: Gomafu contains tandem UACUAAC repeats and associates with splicing factor-1. Genes Cells 16(5):479–490. doi:10.1111/j.1365-2443.2011.01502.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147(7):1537–1550. doi:10.1016/j.cell.2011.11.055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR et al (2001) The sequence of the human genome. Science 291(5507):1304–1351. doi:10.1126/science.1058040

    Article  CAS  PubMed  Google Scholar 

  78. Volders PJ, Helsens K, Wang X, Menten B, Martens L, Gevaert K, Vandesompele J, Mestdagh P (2013) LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res 41(Database issue):D246–D251. doi:10.1093/nar/gks915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43(6):904–914. doi:10.1016/j.molcel.2011.08.018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Wang J, Zhang J, Zheng H, Li J, Liu D, Li H, Samudrala R, Yu J, Wong GK (2004) Mouse transcriptome: neutral evolution of 'non-coding' complementary DNAs. Nature 431 (7010):1 p following 757; discussion following 757

    Google Scholar 

  81. Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M, Cheng SH, Wentworth BM, Bennett CF, Thornton CA (2012) Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature 488(7409):111–115. doi:10.1038/nature11362

    Article  CAS  PubMed  Google Scholar 

  82. Willingham AT, Orth AP, Batalov S, Peters EC, Wen BG, Aza-Blanc P, Hogenesch JB, Schultz PG (2005) A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309(5740):1570–1573. doi:10.1126/science.1115901

    Article  CAS  PubMed  Google Scholar 

  83. Xu X, Yang D, Ding JH, Wang W, Chu PH, Dalton ND, Wang HY, Bermingham JR Jr, Ye Z, Liu F, Rosenfeld MG, Manley JL, Ross J Jr, Chen J, Xiao RP, Cheng H, Fu XD (2005) ASF/SF2-regulated CaMKIIdelta alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell 120(1):59–72. doi:10.1016/j.cell.2004.11.036

    Article  CAS  PubMed  Google Scholar 

  84. Zhou Q, Chung AC, Huang XR, Dong Y, Yu X, Lan HY (2013) Identification of novel long noncoding RNAs associated with TGF-beta/Smad3-mediated renal inflammation and fibrosis by RNA sequencing. Am J Pathol. doi:10.1016/j.ajpath.2013.10.007

    PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Prof. Stephane Heymans for his mentorship. BS is supported by Netherlands Heart Foundation grants 2009B025 and “CVON ARENA,” Veni 016.096.126 and NGI-Horizon 93519017 from the The Netherlands organization for Scientific Research, and FP7-Health-2012 HOMAGE-305507.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanche Schroen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, T., Schroen, B. Missing links in cardiology: long non-coding RNAs enter the arena. Pflugers Arch - Eur J Physiol 466, 1177–1187 (2014). https://doi.org/10.1007/s00424-014-1479-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1479-1

Keywords

Navigation