Skip to main content

Advertisement

Log in

A riluzole- and valproate-sensitive persistent sodium current contributes to the resting membrane potential and increases the excitability of sympathetic neurones

  • Neuroscience
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Non-adapting superior cervical ganglion (SCG) neurones with a clustering activity and sub-threshold membrane potential oscillations were occasionally recorded, suggesting the presence of a persistent sodium current (I NaP). The perforated-patch technique was used to establish its properties and physiological role. Voltage-clamp experiments demonstrated that all SCG cells have a TTX-sensitive I NaP activating at about −60 mV and with half-maximal activation at about −40 mV. The mean maximum I NaP amplitude was around −40 pA at −20 mV. Similar results were achieved when voltage steps or voltage ramps were used to construct the current–voltage relationships, and the general I NaP properties were comparable in mouse and rat SCG neurons. I NaP was inhibited by riluzole and valproate with an IC50 of 2.7 and 3.8 μM, respectively, while both drugs inhibited the transient sodium current (I NaT) with a corresponding IC50 of 34 and 150 μM. It is worth noting that 30 μM valproate inhibited the I NaP by 70% without affecting the I NaT. In current clamp, valproate (30 μM) hyperpolarised resting SCG membranes by about 2 mV and increased the injected current necessary to evoke an action potential by about 20 pA. Together, these results demonstrate for the first time that a persistent sodium current exists in the membrane of SCG sympathetic neurones which could allow them to oscillate in the sub-threshold range. This current also contributes to the resting membrane potential and increases cellular excitability, so that it is likely to play an important role in neuronal behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams PR, Brown DA, Constanti A (1982) M-currents and other potassium currents in bullfrog sympathetic neurones. J Physiol 330:537–572

    PubMed  CAS  Google Scholar 

  2. Adams PR, Brown DA, Constanti A (1982) Pharmacological inhibition of the M-current. J Physiol 332:223–262

    PubMed  CAS  Google Scholar 

  3. Agrawal N, Hamam BN, Magistretti J, Alonso A, Ragsdale DS (2001) Persistent sodium channel activity mediates subthreshold membrane potential oscillations and low-threshold spikes in rat entorhinal cortex layer V neurons. Neuroscience 102:53–64

    Article  PubMed  CAS  Google Scholar 

  4. Alonso A, Klink R (1993) Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. J Neurophysiol 70:128–143

    PubMed  CAS  Google Scholar 

  5. Alonso A, Llinás RR (1989) Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 342:175–177

    Article  PubMed  CAS  Google Scholar 

  6. Alzheimer C, Schwindt PC, Crill WE (1993) Modal gating of Na+ channels as a mechanism of persistent Na+ current in pyramidal neurons from rat and cat sensorimotor cortex. J Neurosci 13:660–673

    PubMed  CAS  Google Scholar 

  7. Baker MD, Bostock H (1998) Inactivation of macroscopic late Na+ current and characteristics of unitary late Na+ currents in sensory neurons. J Neurophysiol 80:2538–2549

    PubMed  CAS  Google Scholar 

  8. Belluzzi O, Sacchi O (1988) The interactions between potassium and sodium currents in generating action potentials in the rat sympathetic neurone. J Physiol 397:127–147

    PubMed  CAS  Google Scholar 

  9. Brown DA, Constanti A (1980) Intracellular observations on the effects of muscarinic agonists on rat sympathetic neurones. Br J Pharmacol 70:593–608

    PubMed  CAS  Google Scholar 

  10. Chao TI, Alzheimer C (1995) Effects of phenytoin on the persistent Na+ current of mammalian CNS neurones. Neuroreport 6:1778–1780

    Article  PubMed  CAS  Google Scholar 

  11. Crill WE (1996) Persistent sodium current in mammalian central neurons. Annu Rev Physiol 58:349–362

    Article  PubMed  CAS  Google Scholar 

  12. Cuevas J, Harper AA, Trequattrini C, Adams DJ (1997) Passive and active membrane properties of isolated rat intracardiac neurons: regulation by H- and M-currents. J Neurophysiol 78:1890–1902

    PubMed  CAS  Google Scholar 

  13. Del Negro CA, Koshiya N, Butera RJ Jr, Smith JC (2002) Persistent sodium current, membrane properties and bursting behavior of pre-Bötzinger complex inspiratory neurons in vivo. J Neurophysiol 88:2242–2250

    Article  PubMed  CAS  Google Scholar 

  14. French CR, Sah P, Buckett KJ, Gage PW (1990) A voltage-dependent persistent sodium current in mammalian hippocampal neurons. J Gen Physiol 95:1139–1157

    Article  PubMed  CAS  Google Scholar 

  15. Galvan M, Sedlmeir C (1984) Outward currents in voltage-clamped rat sympathetic neurones. J Physiol 356:115–133

    PubMed  CAS  Google Scholar 

  16. Gebhardt C, Breustedt JM, Noldner M, Chatterjee SS, Heinemann U (2001) The antiepileptic drug losigamone decreases the persistent Na+ current in rat hippocampal neurons. Brain Res 920:27–31

    Article  PubMed  CAS  Google Scholar 

  17. Gutfreund Y, Yarom Y, Segev I (1995) Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling. J Physiol 483:621–640

    PubMed  CAS  Google Scholar 

  18. Halliwell JV, Adams PR (1982) Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res 250:71–92

    Article  PubMed  CAS  Google Scholar 

  19. Jones SW (1989) On the resting potential of isolated frog sympathetic neurons. Neuron 3:153–161

    Article  PubMed  CAS  Google Scholar 

  20. Lamas JA (1998) A hyperpolarization-activated cation current (Ih) contributes to resting membrane potential in rat superior cervical sympathetic neurones. Pflugers Arch 436:429–435

    Article  PubMed  CAS  Google Scholar 

  21. Lamas JA, Selyanko AA, Brown DA (1997) Effects of a cognition-enhancer, linopirdine (DuP 996), on M-type potassium currents (IK(M)) and some other voltage- and ligand-gated membrane currents in rat sympathetic neurons. Eur J Neurosci 9:605–616

    Article  PubMed  CAS  Google Scholar 

  22. Lamas JA, Reboreda A, Codesido V (2002) Ionic basis of the resting membrane potential in cultured rat sympathetic neurons. Neuroreport 13:585–591

    Article  PubMed  CAS  Google Scholar 

  23. Magistretti J, Alonso A (1999) Biophysical properties and slow voltage-dependent inactivation of a sustained sodium current in entorhinal cortex layer-II principal neurons: a whole-cell and single-channel study. J Gen Physiol 114:491–509

    Article  PubMed  CAS  Google Scholar 

  24. Magistretti J, Mantegazza M, de Curtis M, Wanke E (1998) Modalities of distortion of physiological voltage signals by patch-clamp amplifiers: a modeling study. Biophys J 74:831–842

    Article  PubMed  CAS  Google Scholar 

  25. Martínez-Pinna J, Lamas JA, Gallego R (2002) Calcium current components in intact and dissociated adult mouse sympathetic neurons. Brain Res 951:227–236

    Article  PubMed  Google Scholar 

  26. Miles GB, Dai Y, Brownstone RM (2005) Mechanisms underlying the early phase of spike frequency adaptation in mouse spinal motoneurones. J Physiol (Lond) 566:519–532

    Article  CAS  Google Scholar 

  27. Neher E (1992) Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol 207:123–131

    Article  PubMed  CAS  Google Scholar 

  28. Nishi S, Koketsu K (1960) Electrical properties and activities of single sympathetic neurons in frogs. J Cell Comp Physiol 55:15–30

    Article  PubMed  CAS  Google Scholar 

  29. Pape HC, Driesang RB (1998) Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex. J Neurophysiol 79:217–226

    PubMed  CAS  Google Scholar 

  30. Parri HR, Crunelli V (1998) Sodium current in rat and cat thalamocortical neurons: role of a non-inactivating component in tonic and burst firing. J Neurosci 18:854–867

    PubMed  CAS  Google Scholar 

  31. Patlak JB, Ortiz M (1986) Two modes of gating during late Na+ channel currents in frog sartorius muscle. J Gen Physiol 87:305–326

    Article  PubMed  CAS  Google Scholar 

  32. Qu Y, Curtis R, Lawson D, Gilbride K, Ge P, DiStefano PS, Silos-Santiago I, Catterall WA, Scheuer T (2001) Differential modulation of sodium channel gating and persistent sodium currents by the b1, b2, and b3 subunits. Mol Cell Neurosci 18:570–580

    Article  PubMed  CAS  Google Scholar 

  33. Rae J, Cooper K, Gates P, Watsky M (1991) Low access resistance perforated patch recordings using amphotericin B. J Neurosci Methods 37:15–26

    Article  PubMed  CAS  Google Scholar 

  34. Reboreda A, Sánchez E, Romero M, Lamas JA (2003) Intrinsic spontaneous activity and subthreshold oscillations in neurones of the rat dorsal column nuclei in culture. J Physiol 551:191–205

    Article  PubMed  CAS  Google Scholar 

  35. Romero M, Reboreda A, Sánchez E, Lamas JA (2004) Newly developed blockers of the M-current do not reduce spike frequency adaptation in cultured mouse sympathetic neurons. Eur J Neurosci 19:2693–2702

    Article  PubMed  CAS  Google Scholar 

  36. Smith PA (1994) Amphibian sympathetic ganglia: an owner’s and operator’s manual. Prog Neurobiol 43:439–510

    Article  PubMed  CAS  Google Scholar 

  37. Stafstrom CE (2007) Persistent sodium current and its role in epilepsy. Epilepsy Curr 7:15–22

    Article  PubMed  Google Scholar 

  38. Stuart G, Sakmann B (1995) Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron 15:1065–1076

    Article  PubMed  CAS  Google Scholar 

  39. Taverna S, Mantegazza M, Franceschetti S, Avanzini G (1998) Valproate selectively reduces the persistent fraction of Na+ current in neocortical neurons. Epilepsy Res 32:304–308

    Article  PubMed  CAS  Google Scholar 

  40. Taverna S, Sancini G, Mantegazza M, Franceschetti S, Avanzini G (1999) Inhibition of transient and persistent Na+ current fractions by the new anticonvulsant topiramate. J Pharmacol Exp Ther 288:960–968

    PubMed  CAS  Google Scholar 

  41. Urbani A, Belluzzi O (2000) Riluzole inhibits the persistent sodium current in mammalian CNS neurons. Eur J Neurosci 12:3567–3574

    Article  PubMed  CAS  Google Scholar 

  42. Wang HS, McKinnon D (1995) Potassium currents in rat prevertebral and paravertebral sympathetic neurones: control of firing properties. J Physiol 485:319–335

    PubMed  CAS  Google Scholar 

  43. Zhong G, Masino MA, Harris-Warrick RM (2007) Persistent sodium currents participate in fictive locomotion generation in neonatal mouse spinal cord. J Neurosci 27:4507–4518

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant to J. A. Lamas from the Spanish Ministry of Education and Science (MEC- BFU2005-03494). E. S., M. R. and A. R. were Ph.D. students under the Galician Predoctoral, Spanish FPU and Spanish FPI programmes, respectively. S. J. R. was supported by a grant from Xunta de Galicia, PGIDIT (06PXIC310095PN). We wish to thank A. Senra and V. Domínguez for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Antonio Lamas.

Additional information

J. A. L. and M. R. have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamas, J.A., Romero, M., Reboreda, A. et al. A riluzole- and valproate-sensitive persistent sodium current contributes to the resting membrane potential and increases the excitability of sympathetic neurones. Pflugers Arch - Eur J Physiol 458, 589–599 (2009). https://doi.org/10.1007/s00424-009-0648-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0648-0

Keywords

Navigation