Pflügers Archiv

, Volume 444, Issue 1, pp 251–262

Dual regulation of cardiac Na+-K+ pumps and CFTR Cl channels by protein kinases A and C

  • Simone Erlenkamp
  • Helfried G. Glitsch
  • Jens Kockskämper
Original Article

DOI: 10.1007/s00424-002-0802-4

Cite this article as:
Erlenkamp, S., Glitsch, H.G. & Kockskämper, J. Pflügers Arch - Eur J Physiol (2002) 444: 251. doi:10.1007/s00424-002-0802-4

Abstract.

Regulation of Na+-K+ pump current (Ip) and cystic fibrosis transmembrane conductance regulator (CFTR) Cl current (ICFTR) by protein kinases A and C (PKA and PKC) was compared under identical experimental conditions by simultaneous measurement of the two currents in guinea-pig ventricular myocytes whole-cell voltage-clamped at 30–32 °C. Membrane current (I) was monitored at a holding potential (V) of –20 mV. I/V relationships were obtained by hyperpolarizing voltage ramps. Phorbol 12,13-dibutyrate (PDBu, 0.1–1 µM) and chelerythrine (10 µM) were used to stimulate and inhibit, respectively, PKC activity. PKA was stimulated by forskolin (4 µM) and inhibited by H-89 (50 µM). At –20 mV, stimulation of PKC by PDBu increased Ip to 121–123% of control. Addition of chelerythrine completely reversed this effect. The PDBu-induced augmentation of Ip was voltage dependent. The ratio Ip(PDBu)/Ip(control) increased from 1.10 at –100 mV to ~1.35 at positive membrane potentials. Stimulation of PKA by forskolin also increased Ip voltage dependently (128% of control at –20 mV). The effects of PKC and PKA stimulation on Ip were additive. The maximum Ip observed in the presence of PDBu and forskolin was 141% of control. Application of either H-89 or chelerythrine reversibly decreased Ip by 40% and 24%, respectively, suggesting that basal PKA and PKC activities were involved in the regulation of Ip. In the presence of H-89, PDBu was unable to increase Ip. Likewise, pre-application of chelerythrine abolished the forskolin-induced augmentation of Ip. In contrast to Ip, ICFTR (measured simultaneously) was absent under basal conditions. Stimulation of PKA by forskolin activated a pronounced ICFTR. Stimulation of PKC by PDBu, on the other hand, neither activated the Cl current significantly nor increased ICFTR pre-activated by forskolin. Inhibition of PKC by chelerythrine, however, attenuated the PKA-mediated activation of ICFTR. The results reveal a complex interplay between PKA and PKC in regulating cardiac Ip and ICFTR with some similarities but also important differences. Ip is increased voltage dependently and additively by stimulation of both kinases. The steady-state activity of each of the kinases is involved in the modulation of basal Ip and obligatory for the augmentation of Ip induced by stimulation of the other kinase. In contrast, there appears to be no basal ICFTR. ICFTR is activated significantly only after stimulation of PKA. PKC activity, however, appears to facilitate this activation.

Protein kinase C Protein kinase A Na+-K+ pump CFTR Cl– channel Ventricular myocyte Differences in regulation

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • Simone Erlenkamp
    • 2
  • Helfried G. Glitsch
    • 2
  • Jens Kockskämper
    • 1
  1. 1. Abteilung Kardiologie und Pneumologie, Zentrum Innere Medizin, Georg-August-Universität Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, GermanyGermany
  2. 2.Arbeitsgruppe Muskelphysiologie, Fakultät für Biologie, Ruhr-Universität, 44780 Bochum, GermanyGermany
  3. 3.Present address: Loyola University Chicago, Department of Physiology, Maywood, IL 60153, USA, e-mail: jkocksk@lumc.eduUSA