, Volume 106, Issue 11-12, pp 669-679

Predictability of visual perturbation during locomotion: implications for corrective efference copy signaling

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

In guiding adaptive behavior, efference copy signals or corollary discharge are traditionally considered to serve as predictors of self-generated sensory inputs and by interfering with their central processing are able to counter unwanted consequences of an animal’s own actions. Here, in a speculative reflection on this issue, we consider a different functional role for such intrinsic predictive signaling, namely in stabilizing gaze during locomotion where resultant changes in head orientation in space require online compensatory eye movements in order to prevent retinal image slip. The direct activation of extraocular motoneurons by locomotor-related efference copies offers a prospective substrate for assisting self-motion derived sensory feedback, rather than being subtracted from the sensory signal to eliminate unwanted reafferent information. However, implementing such a feed-forward mechanism would be critically dependent on an appropriate phase coupling between rhythmic propulsive movement and resultant head/visual image displacement. We used video analyzes of actual locomotor behavior and basic theoretical modeling to evaluate head motion during stable locomotion in animals as diverse as Xenopus laevis tadpoles, teleost fish and horses in order to assess the potential suitability of spinal efference copies to the stabilization of gaze during locomotion. In all three species, and therefore regardless of aquatic or terrestrial environment, the head displacements that accompanied locomotor action displayed a strong correlative spatio-temporal relationship in correspondence with a potential predictive value for compensatory eye adjustments. Although spinal central pattern generator-derived efference copies offer appropriately timed commands for extraocular motor control during self-generated motion, it is likely that precise image stabilization requires the additional contributions of sensory feedback signals. Nonetheless, the predictability of the visual consequences of stereotyped locomotion renders intrinsic efference copy signaling an appealing mechanism for offsetting these disturbances, thus questioning the exclusive role traditionally ascribed to sensory-motor transformations in stabilizing gaze during vertebrate locomotion.

This article forms part of a special issue of Biological Cybernetics entitled “Multimodal and Sensorimotor Bionics”.