Skip to main content
Log in

Developing structural constraints on connectivity for biologically embedded neural networks

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In this article, we analyse under which conditions an abstract model of connectivity could actually be embedded geometrically in a mammalian brain. To this end, we adopt and extend a method from circuit design called Rent’s Rule to the highly branching structure of cortical connections. Adding on recent approaches, we introduce the concept of a limiting Rent characteristic that captures the geometrical constraints of a cortical substrate on connectivity. We derive this limit for the mammalian neocortex, finding that it is independent of the species qualitatively as well as quantitatively. In consequence, this method can be used as a universal descriptor for the geometrical restrictions of cortical connectivity. We investigate two widely used generic network models: uniform random and localized connectivity, and show how they are constrained by the limiting Rent characteristic. Finally, we discuss consequences of these restrictions on the development of cortex-size models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles M (1991) Corticonics. Neural circuits of the cerebral cortex. Cambridge University Press, New York

    Book  Google Scholar 

  • Bassett D, Bullmore E (2006) Small-world brain networks. Neuroscientist 12(6): 512–523

    Article  PubMed  Google Scholar 

  • Bassett D, Greenfield D, Meyer-Lindenberg A, Weinberger D, Moore S, Bullmore E (2010) Efficient physical embedding of topologically complex information processing networks in brains and computer circuits. PLoS Comput Biol 6(4): e1000748

    Article  PubMed  Google Scholar 

  • Beiu V, Madappuram B, Kelly P, McDaid L (2009) On two-layer brain-inspired hierarchical topologies—a Rent’s Rule approach. In: LNCS transactions on high-performance embedded architecture and compilers, vol 4(4), pp 1–22

  • Binzegger T, Douglas R, Martin K (2004) A quantitative map of the circuit of cat primary visual cortex. J Neurosci 24(39): 8441–8453

    Article  PubMed  CAS  Google Scholar 

  • Braitenberg V (2001) Brain size and number of neurons: an exercise in synthetic neuroanatomy. J Comput Neurosci 10: 71–77

    Article  PubMed  CAS  Google Scholar 

  • Braitenberg V, Schüz A (1998) cortex: statistics and geometry of neuronal connectivity. Springer, New York

    Google Scholar 

  • Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8: 183–208

    Article  PubMed  CAS  Google Scholar 

  • Changizi M (2007) Scaling the brain and its connections. In: Kaas J (ed) Evolution of nervous systems. Elsevier, Oxford

    Google Scholar 

  • Chklovskii D (2004) Exact solution for the optimal neuronal layout problem. Neural Comput 16: 2067–2078

    Article  PubMed  Google Scholar 

  • Christie P, Stroobandt D (2000) The interpretation and application of Rent’s Rule. IEEE Trans VLSI Syst 8(6): 639–648

    Article  Google Scholar 

  • Donath W (1979) Placement and average interconnection lengths of computer logic. IEEE Trans Circ Syst 26(4): 272–277

    Article  Google Scholar 

  • Hagen L, Kahng A, Fadi J, Ramachandran C (1994) On the intrinsic Rent parameter and spectra-based partitioning methodologies. IEEE Trans Comput Aid Des Integr Circ Syst 13: 27–37

    Article  Google Scholar 

  • Harrison K, Hof P, Wang SH (2002) Scaling laws in the mammalian neocortex: does form provide clues to function. J Neurocytol 31: 289–298

    Article  PubMed  CAS  Google Scholar 

  • Häusler S, Schuch K, Maass W (2009) Motif distribution, dynamical properties, and computational performance of two data-based cortical microcircuit templates. J Physiol 103: 73–87

    Google Scholar 

  • Hellwig B (2000) A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol Cybern 82: 111–121

    Article  PubMed  CAS  Google Scholar 

  • Karypis G, Kumar V (2000) Multilevel k-way hypergraph partitioning. VLSI Des 11(3): 285–300

    Article  Google Scholar 

  • Kremkow J, Kumar A, Rotter S, Aertsen A (2007) Emergence of population synchrony in a layered network of the cat visual cortex. Neurocomputing 70: 2069–2073

    Article  Google Scholar 

  • Landman B, Russo R (1971) On a pin versus block relationship for partitions of logic graphs. IEEE Trans Comput C 20(12): 1469–1479

    Article  Google Scholar 

  • Lanzerotti M, Fiorenza G, Rand R (2004) Interpretation of Rent’s Rule for ultralarge-scale integrated circuit designs, with an application to wirelength distribution models. IEEE Trans VLSI Syst 12(12): 1330–1347

    Article  Google Scholar 

  • Mehring C, Hehl U, Kubo M, Diesmann M, Aertsen A (2003) Activity dynamics and propagation of synchronous spiking in locally connected random networks. Biol Cybern 88: 395–408

    Article  PubMed  Google Scholar 

  • Newman M (2003) The structure and function of complex networks. SIAM Rev 45: 167–256

    Article  Google Scholar 

  • Pakkenberg B, Gundersen H (1997) Neocortical neuron number in humans: effect of sex and age. J Comput Neurol 384: 312–320

    Article  CAS  Google Scholar 

  • Partzsch J, Schüffny R (2009) On the routing complexity of neural network models—Rent’s Rule revisited. In: ESANN, pp 595–600

  • Schemmel J, Brüderle D, Grübl A, Hock M, Meier K, Millner S (2010) A wafer-scale neuromorphic hardware system for large-scale neural modeling. In: ISCAS, pp 1947–1950

  • Schüz A, Chaimow D, Liewald D, Dortenmann M (2006) Quantitative aspects of corticocortical connections: a tracer study in the mouse. Cerebr Cortex 16: 1474–1486

    Article  Google Scholar 

  • Sporns O, Kötter R (2004) Motifs in brain networks. PLoS Biol 2(11): 1910–1918

    Article  CAS  Google Scholar 

  • Stepanyants A, Chklovskii D (2005) Neurogeometry and potential synaptic connectivity. Trends Neurosci 28(7): 387–394

    Article  PubMed  CAS  Google Scholar 

  • Stroobandt D, Kurdahi F (1998) On the characterization of multi-point nets in electronic designs. In: 8th Great Lakes symposium on VLSI, pp 344–350

  • Watts D, Strogatz S (1998) Collective dynamics of small-world networks. Nature 393: 440–442

    Article  PubMed  CAS  Google Scholar 

  • Young M, Scannell J, Burns G (1995) In: Landes RG (ed) The analysis of cortical connectivity. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Partzsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Partzsch, J., Schüffny, R. Developing structural constraints on connectivity for biologically embedded neural networks. Biol Cybern 106, 191–200 (2012). https://doi.org/10.1007/s00422-012-0489-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-012-0489-3

Keywords

Navigation