Skip to main content
Log in

Closed-loop and open-loop control of posture and movement during human trunk bending

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Closed-loop (CL) and open-loop (OL) types of motor control during human forward upper trunk bending are investigated. A two-joint (hip and ankle) biomechanical model of the human body is used. The analysis is performed in terms of the movements along eigenvectors of the motion equation (“eigenmovements” or “natural synergies”). Two analyzed natural synergies are called “H-synergy” (Hip) and “A-synergy” (Ankle) according to the dominant joint in each of these synergies. Parameters of CL control were estimated using a sudden support platform displacement applied during the movement execution. The CL gain in the H-synergy increased and in the A-synergy decreased during the movement as compared with the quiet standing. The analysis of the time course of OL control signal suggests that the H-synergy (responsible for the prime movement, i.e. bending per se) is controlled according to the EP theory whereas for the associated A-synergy (responsible for posture adjustment, i.e. equilibrium maintenance) muscle forces and gravity forces are balanced for any its final amplitude and therefore the EP theory is not applicable to its control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandrov AV, Frolov AA, Massion J (1998) Axial synergies during human upper trunk bending. Exp Brain Res 118: 210–220

    Article  PubMed  CAS  Google Scholar 

  • Alexandrov AV, Frolov AA, Massion J (2001a) Biomechanical analysis of movement strategies in human forward trunk bending. I. Modeling. Biol Cybern 84: 425–434

    Article  PubMed  CAS  Google Scholar 

  • Alexandrov AV, Frolov AA, Massion J (2001b) Biomechanical analysis of movement strategies in human forward trunk bending. II. Experimental study. Biol Cybern 84: 435–443

    Article  PubMed  CAS  Google Scholar 

  • Alexandrov AV, Frolov AA, Massion J (2002) Strategy of equilibrium maintenance during human forward upper trunk bending on the narrow support. Russ J Biomech 6: 59–72

    Google Scholar 

  • Alexandrov AV, Frolov AA, Horak FB, Carlson-Kuhta P, Park S (2004) Biomechanical analysis of strategies of equilibrium control during human upright standing. Russ J Biomech 8(3): 28–42

    Google Scholar 

  • Alexandrov AV, Frolov AA, Horak FB, Carlson-Kuhta P, Park S (2005) Feedback equilibrium control during human standing. Biol Cybern 93: 309–322

    Article  PubMed  CAS  Google Scholar 

  • Bernstein N (1967) The co-ordination and regulation of movements. Pergamon, Oxford

    Google Scholar 

  • Domen K, Latash ML, Zatsiorsky VM (1999) Reconstruction of equilibrium trajectories during whole-body movements. Biol Cybern 80: 195–204

    Article  PubMed  CAS  Google Scholar 

  • Feldman AG, Levin MF (1995) The origin and use of postural frames of reference in motor control. Behav Brain Sci 18: 723–806

    Article  Google Scholar 

  • Feldman AG, Adamovich SV, Ostry DJ, Flanagan JR (1990) The origin of electromyograms. Explanations based on the equilibrium point hypothesis. In: Winters JM, Woo SL-Y (eds) Multiple muscle systems, chap 43. Springer, New York, pp 195–213

  • Feldman AG, Ostry DJ, Levin MF, Gribble PL, Mitnitski AB (1998) Recent tests of the equilibrium-point hypothesis (λ-model). Motor Control 2: 189–205

    PubMed  CAS  Google Scholar 

  • Ferrigno G, Pedotti A (1985) ELITE: a digital dedicated hardware system for movement analysis via real time TV signal processing. IEEE Trans Biomed Eng 32: 943–950

    Article  PubMed  CAS  Google Scholar 

  • Frolov AA, Dufosse M (2001) Adjustment of the human arm viscoelastic properties to the direction of reaching. Biol Cybern 94: 97–109

    Article  Google Scholar 

  • Frolov AA, Prokopenko RA, Dufosse M, Ouezdou FB (2006) Adjustment of the human arm viscoelastic properties to the direction of reaching. Biol Cybern 94: 97–109

    Article  PubMed  CAS  Google Scholar 

  • Gandolfo F, Mussa-Ivaldi FA, Bizzi E (1996) Motor learning by field approximation. Proc Natl Acad Sci USA 93: 3843–3846

    Article  PubMed  CAS  Google Scholar 

  • Gomi H, Kawato M (1996) Equilibrium-point control hypothesis examined by measuring arm stiffness during multijoint movement. Science 272: 117–120

    Article  PubMed  CAS  Google Scholar 

  • Gomi H, Kawato M (1997) Human arm stiffness and equilibrium-point trajectory during multijoint movement. Biol Cybern 76: 163–171

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb GL, Song Q, Hong D, Almedia GL, Corcos D (1996) Coordinating movement at two joints: a principle of linear covariance. J Neurophysiol 75: 1760–1764

    PubMed  CAS  Google Scholar 

  • Gribble PL, Ostry DJ, Sanguineti V, Laboissiere R (1998) Are complex control signals required for human arm movement. J Neurophysiol 79: 1409–1424

    PubMed  CAS  Google Scholar 

  • Gurfinkel VS, Ivanenko YuP, Levik YuS, Babakova IA (1995) Kinesthetic reference for human orthograde posture. Neuroscience 68: 229–243

    Article  PubMed  CAS  Google Scholar 

  • Haruno M, Wolpert DM, Kawato M (2001) Mosaic model for sensorimotor learning and control. Neural Comput 13: 2201–2220

    Article  PubMed  CAS  Google Scholar 

  • Ivanenko YuP, Poppele RE, Lacquanity F (2006) Motor control programs and walking. Neuroscientist 12(4): 339–348

    Article  PubMed  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9: 718–727

    Article  PubMed  CAS  Google Scholar 

  • Kistemaker DA, Van Soest AJ, Bobbert MF (2007) Equilibrium point control cannot be refuted by exprerimental reconstruction of equilibrium point trajectories. J Neurophysiol 98: 1075–1082

    Article  PubMed  Google Scholar 

  • Krishnamoorthy V, Latash MI, Scholz JP, Zatsiorsky VM (2003) Muscle synergies during shifts of center of pressure by standing persons. Exp Brain Res 152: 281–292

    Article  PubMed  Google Scholar 

  • Kuo A, Zajac F (1993) Human standing posture: multijoint movement strategies based on biomechanical constraints. Prog Brain Res 97: 349–358

    Article  PubMed  CAS  Google Scholar 

  • Latash ML (1993) Control of human movements. Human Kinetics, Champaign

    Google Scholar 

  • Massion J, Alexandrov AV, Frolov AA (2004) Why and how are posture and movement coordinated. Prog Brain Res 143: 13–27

    Article  PubMed  Google Scholar 

  • McIntyre J, Bizzi E (1993) Servo hypotheses for the biological control of movement. J Mot Behav 25: 193–202

    Article  PubMed  Google Scholar 

  • Mergner T (2010) A neurological view on reactive humServo hypotheses for the biological coan stance control. Ann Rev Control 34: 178–194

    Article  Google Scholar 

  • Ostry DJ, Feldman AG (2003) A critical evaluation of the force control hypothesis in motor control. Exp Brain Res 221: 275–288

    Article  Google Scholar 

  • Park S, Horak FB, Kuo AD (2004) Postural feedback responses scale with biomechanical constraints in human standing. Exp Brain Res 154: 417–427

    Article  PubMed  Google Scholar 

  • Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 85: 1097–1118

    Google Scholar 

  • Robert T, Zatsiorsky VM, Latash MI (2008) Multi-muscle synergies in an unusual postural task: quick shear force production. Exp Brain Res 187: 237–253

    Article  PubMed  Google Scholar 

  • Schweighofer N, Arbib MA, Kawato M (1998) Role of the cerebellum in reaching movements in humans. I. Distributet inverse dynamics control. Eur J Neurosci 10: 86–94

    Article  PubMed  CAS  Google Scholar 

  • Shidara M, Kawano K, Gomi H, Kawato M (1993) Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Nature 365: 50–52

    Article  PubMed  CAS  Google Scholar 

  • St-Onge N, Adamovich SV, Feldman AG (1997) Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modeling. Neuroscience 79: 295–316

    Article  PubMed  CAS  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nature Neurosci 5: 1226–1235

    Article  PubMed  CAS  Google Scholar 

  • Ting LH, Macpherson JM (2005) A limited set of synergies for force control during a postural task. J Neurophysiol 93: 609–613

    Article  PubMed  Google Scholar 

  • Welch TD, Ting LH (2008) A feedback model reproduces muscle activity during human postural responses to support-surface translations. J Neurophysiol 99: 1032–1038

    Article  PubMed  Google Scholar 

  • Winter DA (1990) Biomechanics and motor control in human movement, 2nd ed. Wiley, New York

    Google Scholar 

  • Wolpert DM, Miall C, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2: 338–347

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11: 1317–1329

    Article  PubMed  CAS  Google Scholar 

  • Zatsiorsky VM, Duarte M (1999) Instant equilibrium point and its migration in standing tasks: rambling and trembling components of the stabilogram. Mot Control 3: 28–38

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Alexandrov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexandrov, A.V., Frolov, A.A. Closed-loop and open-loop control of posture and movement during human trunk bending. Biol Cybern 104, 425–438 (2011). https://doi.org/10.1007/s00422-011-0442-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-011-0442-x

Keywords

Navigation