Skip to main content
Log in

Chronic effects of superimposed electromyostimulation during cycling on aerobic and anaerobic capacity

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

To examine if chronic endurance training by means of simultaneously applied, superimposed electromyostimulation (EMS) can be used to improve performance and physiological core parameters compared to the traditional cycling.

Methods

Twenty-one male subjects (VO2peak 55.2 ± 5.1 ml min− 1 kg− 1) were assigned to either a cycling (C) or cycling with superimposed EMS (C + E) group. Before and after the 4-week training period, including 14 sessions of moderate cycling [60 min at 60% peak power output (PPO)], participants performed a 20-min time-trial, a step test to exhaustion, a 30-s isokinetic sprint test, and maximum force- and power-tests. Markers of muscle damage and metabolic condition were assessed during the training period.

Results

Step test results revealed increases in PPO, VO2peak, lactate threshold 1, and the anaerobic threshold for both groups (p < 0.05). Mean power output (MPO) obtained from time-trial was improved in C and C + E (p < 0.05). Isokinetic sprint test revealed increased PPO in both groups, whereas MPO was only changed in C (p < 0.05). Strength parameters were unaffected. Although metabolic stimuli and markers of muscle damage were higher in C + E compared to C, improvements of endurance performance and capacity were not significantly different between C and C + E.

Conclusions

Despite a higher metabolic, respiratory, and muscular demand, chronic additional superimposed EMS during cycling does not result in superior improvements in endurance and strength performance compared to the traditional cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

[La]peak :

Peak blood-lactate concentration

AT:

Anaerobic threshold

C:

Cycling

C + E:

Cycling with superimposed EMS

CK:

Creatine kinase

d:

Cohen’s effect size

dLa/dtmax :

Maximum rate of lactate accumulation

EMS:

Electromyostimulation

Fmax :

Maximum isometric force

LC:

Leg curl

LDH:

Lactate dehydrogenase

LE:

Leg extension

LT1:

Lactate threshold 1

MPO:

Mean power output

PEPS:

Person’s perceived physical state

Pmax :

Maximum isoinertial power

PPO:

Peak power output

VO2 :

Oxygen uptake

References

  • Aldayel A, Jubeau M, McGuigan M, Nosaka K (2010) Comparison between alternating and pulsed current electrical muscle stimulation for muscle and systemic acute responses. J Appl Physiol (1985) 109(3):735–744. doi:10.1152/japplphysiol.00189.2010

    Article  Google Scholar 

  • Bickel CS, Gregory CM, Dean JC (2011) Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur J Appl Physiol 111(10):2399–2407. doi:10.1007/s00421-011-2128-4

    Article  PubMed  Google Scholar 

  • Biddle SJ, Batterham AM (2015) High-intensity interval exercise training for public health: a big HIT or shall we HIT it on the head? Int J Behav Nutr Phys Act 12:95. doi:10.1186/s12966-015-0254-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Bishop D, Jenkins DG, Mackinnon LT (1998) The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. Med Sci Sports Exerc 30(8):1270–1275

    Article  CAS  PubMed  Google Scholar 

  • Black CD, McCully KK (2008) Muscle injury after repeated bouts of voluntary and electrically stimulated exercise. Med Sci Sports Exerc 40(9):1605–1615. doi:10.1249/MSS.0b013e3181788dbe

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogdanis GC (2012) Effects of physical activity and inactivity on muscle fatigue. Front Physiol 3:142. doi:10.3389/fphys.2012.00142

    Article  PubMed  PubMed Central  Google Scholar 

  • Brancaccio P, Maffulli N, Limongelli FM (2007) Creatine kinase monitoring in sport medicine. Br Med Bull 81–82:209–230. doi:10.1093/bmb/ldm014

    Article  PubMed  Google Scholar 

  • Brooks GA (2000) Intra- and extra-cellular lactate shuttles. Med Sci Sports Exerc 32(4):790–799

    Article  CAS  PubMed  Google Scholar 

  • Brooks GA (2002) Lactate shuttle – between but not within cells? J Physiol 541(Pt 2):333–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke EJ, Franks BD (1975) Changes in V02max resulting from bicycle training at different intensities holding total mechanical work constant. Res Q 46(1):31–37

    CAS  PubMed  Google Scholar 

  • Chen TC (2006) Variability in muscle damage after eccentric exercise and the repeated bout effect. Res Q Exerc Sport 77(3):362–371. doi:10.1080/02701367.2006.10599370

    Article  PubMed  Google Scholar 

  • Chen Y, Serfass RC, Apple FS (2000) Alterations in the expression and activity of creatine kinase-M and mitochondrial creatine kinase subunits in skeletal muscle following prolonged intense exercise in rats. Eur J Appl Physiol 81(1–2):114–119. doi:10.1007/PL00013783

    Article  CAS  PubMed  Google Scholar 

  • Davies CT, Knibbs AV (1971) The training stimulus. The effects of intensity, duration and frequency of effort on maximum aerobic power output. Int Z Angew Physiol 29(4):299–305

    CAS  PubMed  Google Scholar 

  • Filipovic A, Kleinoder H, Dormann U, Mester J (2011) Electromyostimulation: a systematic review of the influence of training regimens and stimulation parameters on effectiveness in electromyostimulation training of selected strength parameters. J Strength Cond Res 25(11):3218–3238. doi:10.1519/JSC.0b013e318212e3ce

    Article  PubMed  Google Scholar 

  • Filipovic A, Kleinoder H, Dormann U, Mester J (2012) Electromyostimulation–a systematic review of the effects of different electromyostimulation methods on selected strength parameters in trained and elite athletes. J Strength Cond Res 26(9):2600–2614. doi:10.1519/JSC.0b013e31823f2cd1

    Article  PubMed  Google Scholar 

  • Filipovic A, Grau M, Kleinöder H, Zimmer P, Hollmann W, Bloch W (2016) Effects of a whole-body electrostimulation program on strength, sprinting, jumping, and kicking capacity in elite soccer players. J Sports Sci Med 15(4):639–648

    PubMed  PubMed Central  Google Scholar 

  • Gaesser GA, Rich RG (1984) Effects of high- and low-intensity exercise training on aerobic capacity and blood lipids. Med Sci Sports Exerc 16(3):269–274

    Article  CAS  PubMed  Google Scholar 

  • Gladden LB (2008) A lactatic perspective on metabolism. Med Sci Sports Exerc 40(3):477–485. doi:10.1249/MSS.0b013e31815fa580

    Article  CAS  PubMed  Google Scholar 

  • Gormley SE, Swain DP, High R, Spina RJ, Dowling EA, Kotipalli US, Gandrakota R (2008) Effect of intensity of aerobic training on VO2max. Med Sci Sports Exerc 40(7):1336–1343. doi:10.1249/MSS.0b013e31816c4839

    Article  PubMed  Google Scholar 

  • Gregory CM, Bickel CS (2005) Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther 85(4):358–364

    PubMed  Google Scholar 

  • Haralambie G, Senser L (1980) Metabolic changes in man during long-distance swimming. Eur J Appl Physiol Occup Physiol 43(2):115–125

    Article  CAS  PubMed  Google Scholar 

  • Hardcastle SJ, Ray H, Beale L, Hagger MS (2014) Why sprint interval training is inappropriate for a largely sedentary population. Front Psychol 5:1505. doi:10.3389/fpsyg.2014.01505

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawley JA (2009) Molecular responses to strength and endurance training: are they incompatible? Appl Physiol Nutr Metab 34(3):355–361. doi:10.1139/H09-023

    Article  CAS  PubMed  Google Scholar 

  • Hawley JA, Noakes TD (1992) Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. Eur J Appl Physiol Occup Physiol 65(1):79–83

    Article  CAS  PubMed  Google Scholar 

  • Heck H, Schulz H (2002) Diagnostics of anaerobic power and capacity. Dtsch Z Sportmed 53(7–8):202–212

    CAS  Google Scholar 

  • Helgerud J, Hoydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, Helgesen C, Hjorth N, Bach R, Hoff J (2007) Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc 39(4):665–671. doi:10.1249/mss.0b013e3180304570

    Article  PubMed  Google Scholar 

  • Huerta-Alardin AL, Varon J, Marik PE (2005) Bench-to-bedside review: Rhabdomyolysis: an overview for clinicians. Crit Care 9(2):158–169. doi:10.1186/cc2978

    Article  PubMed  Google Scholar 

  • Jubeau M, Sartorio A, Marinone PG, Agosti F, Van Hoecke J, Nosaka K, Maffiuletti NA (2008) Comparison between voluntary and stimulated contractions of the quadriceps femoris for growth hormone response and muscle damage. J Appl Physiol (1985) 104(1):75–81. doi:10.1152/japplphysiol.00335.2007

    Article  CAS  PubMed  Google Scholar 

  • Karalaki M, Fili S, Philippou A, Koutsilieris M (2009) Muscle regeneration: cellular and molecular events. In Vivo 23(5):779–796

    CAS  PubMed  Google Scholar 

  • Kemmler W, Teschler M, Bebenek M, von Stengel S (2015) (Very) high Creatinkinase concentration after exertional whole-body electromyostimulation application: health risks and longitudinal adaptations. Wien Med Wochenschr 165(21–22):427–435. doi:10.1007/s10354-015-0394-1

    Article  PubMed  Google Scholar 

  • Kim CK, Bangsbo J, Strange S, Karpakka J, Saltin B (1995) Metabolic response and muscle glycogen depletion pattern during prolonged electrically induced dynamic exercise in man. Scand J Rehabil Med 27(1):51–58

    CAS  PubMed  Google Scholar 

  • Kleinert J (2006) Adjective list for assessing perceived physical state (PEPS). Z Sportpsychol 13:156–164

    Article  Google Scholar 

  • Klossner S, Dapp C, Schmutz S, Vogt M, Hoppeler H, Fluck M (2007) Muscle transcriptome adaptations with mild eccentric ergometer exercise. Pflugers Arch 455(3):555–562. doi:10.1007/s00424-007-0303-6

    Article  CAS  PubMed  Google Scholar 

  • Lake DA (1992) Neuromuscular electrical stimulation. An overview and its application in the treatment of sports injuries. Sports Med 13(5):320–336

    Article  CAS  PubMed  Google Scholar 

  • Laughlin MH, Roseguini B (2008) Mechanisms for exercise training-induced increases in skeletal muscle blood flow capacity: differences with interval sprint training versus aerobic endurance training. J Physiol Pharmacol 59(7):71–88

    PubMed  PubMed Central  Google Scholar 

  • Maffiuletti NA (2010) Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol 110(2):223–234. doi:10.1007/s00421-010-1502-y

    Article  PubMed  Google Scholar 

  • Maffiuletti NA, Cometti G, Amiridis IG, Martin A, Pousson M, Chatard JC (2000) The effects of electromyostimulation training and basketball practice on muscle strength and jumping ability. Int J Sports Med 21(6):437–443. doi:10.1055/s-2000-3837

    Article  CAS  PubMed  Google Scholar 

  • McHugh MP, Connolly DA, Eston RG, Gleim GW (1999) Exercise-induced muscle damage and potential mechanisms for the repeated bout effect. Sports Med 27(3):157–170

    Article  CAS  PubMed  Google Scholar 

  • Miniero R, Altomare F, Rubino M, Matarazzo P, Montanari C, Petri A, Raiola G, Bona G (2012) Effect of recombinant human growth hormone (rhGH) on hemoglobin concentration in children with idiopathic growth hormone deficiency-related anemia. J Pediatr Hematol Oncol 34(6):407–411. doi:10.1097/MPH.0b013e318253f082

    Article  CAS  PubMed  Google Scholar 

  • Nader GA (2006) Concurrent strength and endurance training: from molecules to man. Med Sci Sports Exerc 38(11):1965–1970. doi:10.1249/01.mss.0000233795.39282.33

    Article  PubMed  Google Scholar 

  • O’Donovan G, Owen A, Bird SR, Kearney EM, Nevill AM, Jones DW, Woolf-May K (2005) Changes in cardiorespiratory fitness and coronary heart disease risk factors following 24 wk of moderate- or high-intensity exercise of equal energy cost. J Appl Physiol (1985) 98(5):1619–1625. doi:10.1152/japplphysiol.01310.2004

    Article  Google Scholar 

  • Paillard T, Noe F, Passelergue P, Dupui P (2005) Electrical stimulation superimposed onto voluntary muscular contraction. Sports Med 35(11):951–966

    Article  PubMed  Google Scholar 

  • Petterson S, Snyder-Mackler L (2006) The use of neuromuscular electrical stimulation to improve activation deficits in a patient with chronic quadriceps strength impairments following total knee arthroplasty. J Orthop Sports Phys Ther 36(9):678–685. doi:10.2519/jospt.2006.2305

    Article  PubMed  Google Scholar 

  • Ronnestad BR, Hansen EA, Raastad T (2012) High volume of endurance training impairs adaptations to 12 weeks of strength training in well-trained endurance athletes. Eur J Appl Physiol 112(4):1457–1466. doi:10.1007/s00421-011-2112-z

    Article  PubMed  Google Scholar 

  • Seiler S, Tonnessen E (2009) Intervals, thresholds, and long slow distance: the role of intensity and duration in endurance training. Sportscience 13:32–53.

    Google Scholar 

  • Stevens JE, Mizner RL, Snyder-Mackler L (2004) Neuromuscular electrical stimulation for quadriceps muscle strengthening after bilateral total knee arthroplasty: a case series. J Orthop Sports Phys Ther 34(1):21–29. doi:10.2519/jospt.2004.34.1.21

    Article  PubMed  Google Scholar 

  • Vanderthommen M, Duteil S, Wary C, Raynaud JS, Leroy-Willig A, Crielaard JM, Carlier PG (2003) A comparison of voluntary and electrically induced contractions by interleaved 1 H- and 31P-NMRS in humans. J Appl Physiol (1985) 94(3):1012–1024. doi:10.1152/japplphysiol.00887.2001

    Article  CAS  PubMed  Google Scholar 

  • Veldman MP, Gondin J, Place N, Maffiuletti NA (2016) Effects of neuromuscular electrical stimulation training on endurance performance. Front Physiol 7:544. doi:10.3389/fphys.2016.00544

    Article  PubMed  PubMed Central  Google Scholar 

  • Viru A, Viru M (2004) Cortisol - essential adaptation hormone in exercise. Int J Sports Med 25(6):461–464. doi:10.1055/s-2004-821068

    Article  CAS  PubMed  Google Scholar 

  • Wahl P, Haegele M, Zinner C, Bloch W, Mester J (2010a) High Intensity Training (HIT) für die Verbesserung der Ausdauerleistungsfähigkeit im Leistungssport. Schweizerische Zeitschrift für Sportmedizin 58(4):125–133

    Google Scholar 

  • Wahl P, Hagele M, Zinner C, Bloch W, Mester J (2010b) [High intensity training (HIT) for the improvement of endurance capacity of recreationally active people and in prevention & rehabilitation]. Wien Med Wochenschr 160(23–24):627–636. doi:10.1007/s10354-010-0857-3

    Article  PubMed  Google Scholar 

  • Wahl P, Schaerk J, Achtzehn S, Kleinoder H, Bloch W, Mester J (2012) Physiological responses and perceived exertion during cycling with superimposed electromyostimulation. J Strength Cond Res 26(9):2383–2388. doi:10.1519/JSC.0b013e31823f2749

    Article  PubMed  Google Scholar 

  • Wahl P, Mathes S, Kohler K, Achtzehn S, Bloch W, Mester J (2013) Acute metabolic, hormonal, and psychological responses to different endurance training protocols. Horm Metab Res 45(11):827–833. doi:10.1055/s-0033-1347242

    Article  CAS  PubMed  Google Scholar 

  • Wahl P, Hein M, Achtzehn S, Bloch W, Mester J (2014) Acute metabolic, hormonal and psychological responses to cycling with superimposed electromyostimulation. Eur J Appl Physiol 114(11):2331–2339. doi:10.1007/s00421-014-2952-4

    Article  CAS  PubMed  Google Scholar 

  • Wahl P, Hein M, Achtzehn S, Bloch W, Mester J (2015) Acute effects of superimposed electromyostimulation during cycling on myokines and markers of muscle damage. J Musculoskelet Neuronal Interact 15(1):53–59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Taniguchi Y, Moritani T (2014) Metabolic and cardiovascular responses during voluntary pedaling exercise with electrical muscle stimulation. Eur J Appl Physiol 114(9):1801–1807. doi:10.1007/s00421-014-2906-x

    Article  CAS  PubMed  Google Scholar 

  • Wenger HA, Bell GJ (1986) The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness. Sports Med 3(5):346–356

    Article  CAS  PubMed  Google Scholar 

  • Wirtz N, Zinner C, Doermann U, Kleinoeder H, Mester J (2016) Effects of loaded squat exercise with and without application of superimposed EMS on physical performance. J Sports Sci Med 15(1):26–33

    PubMed  PubMed Central  Google Scholar 

  • Zoll J, Steiner R, Meyer K, Vogt M, Hoppeler H, Fluck M (2006) Gene expression in skeletal muscle of coronary artery disease patients after concentric and eccentric endurance training. Eur J Appl Physiol 96(4):413–422. doi:10.1007/s00421-005-0082-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the subjects for their enthusiasm in participating in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Wahl.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Jean-René Lacour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathes, S., Lehnen, N., Link, T. et al. Chronic effects of superimposed electromyostimulation during cycling on aerobic and anaerobic capacity. Eur J Appl Physiol 117, 881–892 (2017). https://doi.org/10.1007/s00421-017-3572-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3572-6

Keywords

Navigation