Skip to main content
Log in

Effects of training and detraining on adiponectin plasma concentration and muscle sensitivity in lean and overweight men

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

To delineate the direct effect of physical activity on adiponectin metabolism, we investigated the impact of contrasted physical activity changes, independent of body mass changes, on adiponectin plasma concentration and muscle sensitivity in lean and overweight adult males.

Methods

Eleven physically active lean men (70.6 ± 2.1 kg) were subjected to 1-month detraining; 9 sedentary lean men (73.1 ± 3.3 kg); and 11 sedentary overweight men (97.5 ± 3.0 kg) participated in a 2-month aerobic-exercise training program. Diet was controlled to maintain stable energy balance. Body composition, VO2peak, circulating adiponectin, adipose and muscle tissue adiponectin, muscle adiponectin receptors, and APPL1 mRNAs were measured before and after the interventions.

Results

At baseline, plasma high-molecular-weight adiponectin concentration was lower in both active lean (5.44 ± 0.58 µg/mL) and sedentary overweight (5.30 ± 1.06 µg/mL) than in sedentary lean participants (7.44 ± 1.06 µg/mL; both p < 0.05). Training reduced total and high-molecular-weight adiponectin concentrations by, respectively, −32 and −42 % in sedentary lean, and −26 and −35 % in sedentary overweight, while detraining increased them by +25 and +27 % in active lean participants. Total and high-molecular-weight adiponectin changes were inversely correlated with VO2peak changes (respectively, R 2 = 0.45, R 2 = 0.59; both p < 0.001) and positively with changes in fasting plasma insulin (both p < 0.05). Muscle and adipose tissue adiponectin mRNA did not differ between groups and with interventions. Muscle AdipoR2 and APPL1 mRNAs were lower in sedentary groups compared with the active group; and were positively associated with VO2peak and inversely with fasting plasma insulin concentration.

Conclusion

Plasma adiponectin concentration is inversely correlated with aerobic capacity. Future investigations will need to confirm the contribution of changes in muscle adiponectin sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AMPK:

AMP-activated protein kinase

APPL1:

Adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper containing 1

BMI:

Body mass index

ELISA:

Enzyme-linked immunosorbent assay

FFM:

Fat-free mass

FM:

Fat mass

HMW:

High molecular weight

LMW:

Low molecular weight

MMW:

Medium molecular weight

mRNA:

Messenger ribonucleic acid

MOSPA:

Monica optional study of physical activity

SEM:

Standard error of the mean

VO2peak :

Maximal oxygen consumption

References

  • Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257(1):79–83. doi:10.1006/bbrc.1999.0255

    Article  CAS  PubMed  Google Scholar 

  • Auerbach P, Nordby P, Bendtsen LQ, Mehlsen JL, Basnet SK, Vestergaard H, Ploug T, Stallknecht B (2013) Differential effects of endurance training and weight loss on plasma adiponectin multimers and adipose tissue macrophages in younger, moderately overweight men. Am J Physiol Regul Integr Comp Physiol 305(5):R490–R498. doi:10.1152/ajpregu.00575.2012

    Article  CAS  PubMed  Google Scholar 

  • Beavers KM, Ambrosius WT, Nicklas BJ, Rejeski WJ (2013) Independent and combined effects of physical activity and weight loss on inflammatory biomarkers in overweight and obese older adults. J Am Geriatr Soc 61(7):1089–1094. doi:10.1111/jgs.12321

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergouignan A, Rudwill F, Simon C, Blanc S (2011) Physical inactivity as the culprit of metabolic inflexibility: evidence from bed-rest studies. J Appl Physiol 111(4):1201–1210. doi:10.1152/japplphysiol.00698.2011

    Article  CAS  PubMed  Google Scholar 

  • Bergouignan A, Momken I, Lefai E, Antoun E, Schoeller DA, Platat C, Chery I, Zahariev A, Vidal H, Gabert L, Normand S, Freyssenet D, Laville M, Simon C, Blanc S (2013) Activity energy expenditure is a major determinant of dietary fat oxidation and trafficking, but the deleterious effect of detraining is more marked than the beneficial effect of training at current recommendations. Am J Clin Nutr 98(3):648–658. doi:10.3945/ajcn.3112.057075 Epub 052013 Jul 057031

    Article  CAS  PubMed  Google Scholar 

  • Bouassida A, Chamari K, Zaouali M, Feki Y, Zbidi A, Tabka Z (2010) Review on leptin and adiponectin responses and adaptations to acute and chronic exercise. Br J Sports Med 44(9):620–630. doi:10.1136/bjsm.2008.046151

    Article  CAS  PubMed  Google Scholar 

  • Cheng KK, Lam KS, Wang B, Xu A (2014) Signaling mechanisms underlying the insulin-sensitizing effects of adiponectin. Best Pract Res Clin Endocrinol Metab 28(1):3–13. doi:10.1016/j.beem.2013.06.006

    Article  CAS  PubMed  Google Scholar 

  • Christiansen T, Paulsen SK, Bruun JM, Ploug T, Pedersen SB, Richelsen B (2010) Diet-induced weight loss and exercise alone and in combination enhance the expression of adiponectin receptors in adipose tissue and skeletal muscle, but only diet-induced weight loss enhanced circulating adiponectin. J Clin Endocrinol Metab 95(2):911–919. doi:10.1210/jc.2008-2505

    Article  CAS  PubMed  Google Scholar 

  • de Mello MT, de Piano A, Carnier J, Sanches Pde L, Correa FA, Tock L, Ernandes RM, Tufik S, Damaso AR (2011) Long-term effects of aerobic plus resistance training on the metabolic syndrome and adiponectinemia in obese adolescents. J Clin Hypertens 13(5):343–350. doi:10.1111/j.1751-7176.2010.00388.x

    Article  Google Scholar 

  • de Piano A, de Mello MT, Sanches Pde L, da Silva PL, Campos RM, Carnier J, Corgosinho F, Foschini D, Masquio DL, Tock L, Oyama LM, do Nascimento CM, Tufik S, Damaso AR (2012) Long-term effects of aerobic plus resistance training on the adipokines and neuropeptides in nonalcoholic fatty liver disease obese adolescents. Eur J Gastroenterol Hepatol 24(11):1313–1324. doi:10.1097/MEG.0b013e32835793ac

    PubMed  Google Scholar 

  • Farias JM, Maggi RM, Tromm CB, Silva LA, Luciano TF, Marques SO, Lira FS, de Souza CT, Pinho RA (2012) Exercise training performed simultaneously to a high-fat diet reduces the degree of insulin resistance and improves adipoR1-2/APPL1 protein levels in mice. Lipids Health Dis 11:134. doi:10.1186/1476-511X-11-134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golbidi S, Laher I (2014) Exercise induced adipokine changes and the metabolic syndrome. J Diabetes Res 2014:726861. doi:10.1155/2014/726861

    Article  PubMed  PubMed Central  Google Scholar 

  • Goto A, Ohno Y, Ikuta A, Suzuki M, Ohira T, Egawa T, Sugiura T, Yoshioka T, Ohira Y, Goto K (2013) Up-regulation of adiponectin expression in antigravitational soleus muscle in response to unloading followed by reloading, and functional overloading in mice. PLoS One 8(12):e81929. doi:10.1371/journal.pone.0081929

    Article  PubMed  PubMed Central  Google Scholar 

  • Hara K, Horikoshi M, Yamauchi T, Yago H, Miyazaki O, Ebinuma H, Imai Y, Nagai R, Kadowaki T (2006) Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome. Diabetes Care 29(6):1357–1362

    Article  CAS  PubMed  Google Scholar 

  • Hayashino Y, Jackson JL, Hirata T, Fukumori N, Nakamura F, Fukuhara S, Tsujii S, Ishii H (2014) Effects of exercise on C-reactive protein, inflammatory cytokine and adipokine in patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Metab Clin Exp 63(3):431–440. doi:10.1016/j.metabol.2013.08.018

    Article  CAS  PubMed  Google Scholar 

  • Hu E, Liang P, Spiegelman BM (1996) AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 271(18):10697–10703

    Article  CAS  PubMed  Google Scholar 

  • Ibanez J, Izquierdo M, Martinez-Labari C, Ortega F, Grijalba A, Forga L, Idoate F, Garcia-Unciti M, Fernandez-Real JM, Gorostiaga EM (2010) Resistance training improves cardiovascular risk factors in obese women despite a significative decrease in serum adiponectin levels. Obesity 18(3):535–541. doi:10.1038/oby.2009.277

    Article  PubMed  Google Scholar 

  • Kramer M (2005) R2 statistics for mixed models. In: Presented at the 17th annual Kansas State University Conference on applied statistics in agriculture, 24–26 April

  • Lee S, Park Y, Dellsperger KC, Zhang C (2011) Exercise training improves endothelial function via adiponectin-dependent and independent pathways in type 2 diabetic mice. Am J Physiol Heart Circ Physiol 301(2):H306–H314. doi:10.1152/ajpheart.01306.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, Ramos FJ, Fang Q, Christ-Roberts CY, Hong JY, Kim RY, Liu F, Dong LQ (2006) APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol 8(5):516–523. doi:10.1038/ncb1404

    Article  CAS  PubMed  Google Scholar 

  • Marinho R, Ropelle ER, Cintra DE, De Souza CT, Da Silva AS, Bertoli FC, Colantonio E, D’Almeida V, Pauli JR (2012) Endurance exercise training increases APPL1 expression and improves insulin signaling in the hepatic tissue of diet-induced obese mice, independently of weight loss. J Cell Physiol 227(7):2917–2926. doi:10.1002/jcp.23037

    Article  CAS  PubMed  Google Scholar 

  • Ohashi K, Shibata R, Murohara T, Ouchi N (2014) Role of anti-inflammatory adipokines in obesity-related diseases. Trends Endocrinol Metab: TEM 25(7):348–355. doi:10.1016/j.tem.2014.03.009

    Article  CAS  PubMed  Google Scholar 

  • Polak J, Klimcakova E, Moro C, Viguerie N, Berlan M, Hejnova J, Richterova B, Kraus I, Langin D, Stich V (2006) Effect of aerobic training on plasma levels and subcutaneous abdominal adipose tissue gene expression of adiponectin, leptin, interleukin 6, and tumor necrosis factor alpha in obese women. Metab Clin Exp 55(10):1375–1381. doi:10.1016/j.metabol.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  • Roeykens J, Rogers R, Meeusen R, Magnus L, Borms J, de Meirleir K (1998) Validity and reliability in a Flemish population of the WHO-MONICA Optional Study of Physical Activity Questionnaire. Med Sci Sports Exerc 30(7):1071–1075

    Article  CAS  PubMed  Google Scholar 

  • Rutkowski JM, Halberg N, Wang QA, Holland WL, Xia JY, Scherer PE (2014) Differential transendothelial transport of adiponectin complexes. Cardiovasc Diabetol 13:47. doi:10.1186/1475-2840-13-47

    Article  PubMed  PubMed Central  Google Scholar 

  • Schraw T, Wang ZV, Halberg N, Hawkins M, Scherer PE (2008) Plasma adiponectin complexes have distinct biochemical characteristics. Endocrinology 149(5):2270–2282. doi:10.1210/en.2007-1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson KA, Singh MA (2008) Effects of exercise on adiponectin: a systematic review. Obesity 16(2):241–256. doi:10.1038/oby.2007.53

    Article  CAS  PubMed  Google Scholar 

  • Van Berendoncks AM, Garnier A, Beckers P, Hoymans VY, Possemiers N, Fortin D, Martinet W, Van Hoof V, Vrints CJ, Ventura-Clapier R, Conraads VM (2010) Functional adiponectin resistance at the level of the skeletal muscle in mild to moderate chronic heart failure. Circ Heart Fail 3(2):185–194. doi:10.1161/CIRCHEARTFAILURE.109.885525

    Article  PubMed  Google Scholar 

  • Van Berendoncks AM, Garnier A, Beckers P, Hoymans VY, Possemiers N, Fortin D, Van Hoof V, Dewilde S, Vrints CJ, Ventura-Clapier R, Conraads VM (2011) Exercise training reverses adiponectin resistance in skeletal muscle of patients with chronic heart failure. Heart 97(17):1403–1409. doi:10.1136/hrt.2011.226373

    Article  PubMed  Google Scholar 

  • Wu ZJ, Cheng YJ, Gu WJ, Aung LH (2014) Adiponectin is associated with increased mortality in patients with already established cardiovascular disease: a systematic review and meta-analysis. Metab Clin Exp 63(9):1157–1166. doi:10.1016/j.metabol.2014.05.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from: Fondation Cœur et Artères; University Hospital of Strasbourg, France; French National Agency for Research (PRNA); Centre National de la Recherche Scientifique (CNRS); and French Ministry of Higher Education and Research through a fellowship (to CG). Authors’ contributions to manuscript: S. B. and C. S. conception and design of research; A. B., S. B., C. S., E. L., and J. D. performed experiments; C. G., C. V., S. B., and C. S. analysed data; C. G. and C. V. drafted manuscript; C. G., C. V., S. B., A. B., E. C. S., and C. S. edited and revised manuscript; and C. G., C. V., J. D., E. C. S., S. B., A. B., E. L., and C. S. approved final version of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chantal Simon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Fabio Fischetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gastebois, C., Villars, C., Drai, J. et al. Effects of training and detraining on adiponectin plasma concentration and muscle sensitivity in lean and overweight men. Eur J Appl Physiol 116, 2135–2144 (2016). https://doi.org/10.1007/s00421-016-3466-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-016-3466-z

Keywords

Navigation