Skip to main content
Log in

Differential modulation of motor cortex plasticity in skill- and endurance-trained athletes

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Extensive evidence exists that regular physical exercise offers neuroplastic benefits to the brain. In this study, exercise-specific effects on motor cortex plasticity were compared between 15 skilled and 15 endurance trained athletes and 8 controls.

Methods

Plasticity was tested with a paired associative stimulation (PAS) protocol. PAS is a non-invasive stimulation method developed to induce bidirectional changes in the excitability of the cortical projections to the target muscles. Motor cortex excitability was assessed by motor-evoked potentials (MEPs) in the task-relevant soleus muscle, elicited with transcranial magnetic stimulation, before and following PAS. To test for changes at the spinal level, soleus short latency stretch reflexes (SLSR) were elicited before and after PAS.

Results

PAS induced a significant (76 ± 83 %) increase in MEP amplitude in the skill group, without significant changes in the endurance (−7 ± 35 %) or control groups (21 ± 30 %). Baseline MEP/post MEP ratio was significantly different between the skill and endurance groups. SLSR remained unchanged after the PAS intervention.

Conclusion

The possible reason for differential motor cortex plasticity in skill and endurance groups is likely related to the different training-induced adaptations. The findings of the current study suggest that long-term skill training by skill group induced preferable adaptations in the task-related areas of the motor cortex because increased plasticity is known to enhance motor learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EMG:

Electromyography

LTP:

Long-term potentiation

MEP:

Motor-evoked potential

MVC:

Maximal voluntary contraction

PAS:

Paired associative stimulation

RMT:

Resting motor threshold

SLSR:

Short latency stretch reflex

TMS:

Transcranial magnetic stimulation

References

  • Adkins DL, Boychuk J, Remple MS, Kleim JA (2006) Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J Appl Physiol 101:1776–1782

    Article  PubMed  Google Scholar 

  • Ahtiainen JP, Hulmi JJ, Kraemer WJ, Lehti M, Pakarinen A, Mero AA, Karavirta L, Sillanpää E, Selänne H, Alen M, Komulainen J, Kovanen V, Nyman K, Häkkinen K (2009) Strength, [corrected] endurance or combined training elicit diverse skeletal muscle myosin heavy chain isoform proportion but unaltered androgen receptor concentration in older men. Int J Sports Med 30:879–887

    Article  CAS  PubMed  Google Scholar 

  • Alricsson M, Harms-Ringdahl K, Eriksson K, Werner S (2003) The effect of dance training on joint mobility, muscle flexibility, speed and agility in young cross-country skiers ? a prospective controlled intervention study. Scand J Med Sci Sports 13:237–243

    Article  CAS  PubMed  Google Scholar 

  • Beck H, Goussakov IV, Lie A, Helmstaedter C, Elger CE (2000) Synaptic plasticity in the human dentate gyrus. J Neurosci 20:7080–7086

    CAS  PubMed  Google Scholar 

  • Cirillo J, Lavender AP, Ridding MC, Semmler JG (2009) Motor cortex plasticity induced by paired associative stimulation is enhanced in physically active individuals. J Physiol (Lond) 587:5831–5842

    Article  CAS  Google Scholar 

  • Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129:1659–1673

    Article  CAS  PubMed  Google Scholar 

  • Coubard OA, Duretz S, Lefebvre V, Lapalus P, Ferrufino L (2011) Practice of contemporary dance improves cognitive flexibility in aging. Front Aging Neurosci 3:13

    Article  PubMed Central  PubMed  Google Scholar 

  • Di Lazzaro V, Dileone M, Pilato F et al (2009) Associative motor cortex plasticity: direct evidence in humans. Cereb Cortex 19:2326–2330

    Article  PubMed  Google Scholar 

  • Erickson KI, Prakash RS, Voss MW, Chaddock L, Hu L, Morris KS, White SM, Wójcicki TR, McAuley E, Kramer AF (2009) Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 19:1030–1039

    Article  PubMed Central  PubMed  Google Scholar 

  • Erickson KI, Weinstein AM, Sutton BP, Prakash RS, Voss MW, Chaddock L, Mailey EL, Szabo AN, White SM, Wojcicki TR, McAuley E, Kramer AF (2012) Beyond vascularization: aerobic fitness is associated with N-acetylaspartate and working memory. Brain Behav 2:32–41

    Article  PubMed Central  PubMed  Google Scholar 

  • Floyer-Lea A, Matthews PM (2004) Changing brain networks for visuomotor control with increased movement automaticity. J Neurophysiol 92:2405–2412

    Article  CAS  PubMed  Google Scholar 

  • Frantseva MV, Fitzgerald PB, Chen R, Moller B, Daigle M, Daskalakis ZJ (2008) Evidence for impaired long-term potentiation in schizophrenia and its relationship to motor skill learning. Cereb Cortex 18:990–996

    Article  PubMed  Google Scholar 

  • Hamada M, Strigaro G, Murase N, Sadnicka A, Galea JM, Edwards MJ, Rothwell JC (2012) Cerebellar modulation of human associative plasticity. J Physiol 590:2365–2374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishikawa M, Komi PV, Grey MJ, Lepola V, Bruggemann GP (2005) Muscle-tendon interaction and elastic energy usage in human walking. J Appl Physiol 99:603–608

    Article  PubMed  Google Scholar 

  • Jung P, Ziemann U (2009) Homeostatic and nonhomeostatic modulation of learning in human motor cortex. J Neurosci 29:5597–5604

    Article  CAS  PubMed  Google Scholar 

  • Karni A, Meyer G, Jezzard P, Adams MM, Turner R, Ungerleider LG (1995) Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377:155–158

    Article  CAS  PubMed  Google Scholar 

  • Katiuscia S, Franco C, Federico D, Davide M, Sergio D, Giuliano G (2009) Reorganization and enhanced functional connectivity of motor areas in repetitive ankle movements after training in locomotor attention. Brain Res 1297:124–134

    Article  CAS  PubMed  Google Scholar 

  • Kattenstroth JC, Kalisch T, Holt S, Tegenthoff M, Dinse HR (2013) Six months of dance intervention enhances postural, sensorimotor, and cognitive performance in elderly without affecting cardio-respiratory functions. Front Aging Neurosci 5:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Kempermann G, Fabel K, Ehninger D, Babu H, Leal-Galicia P, Garthe A, Wolf SA (2010) Why and how physical activity promotes experience-induced brain plasticity. Front Neurosci 4:189

    Article  PubMed Central  PubMed  Google Scholar 

  • Kleim JA, Lussnig E, Schwarz ER, Comery TA, Greenough WT (1996) Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning. J Neurosci 16:4529–4535

    CAS  PubMed  Google Scholar 

  • Kleim JA, Cooper NR, VandenBerg PM (2002) Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Res 934:1–6

    Article  CAS  PubMed  Google Scholar 

  • Kleim JA, Hogg TM, VandenBerg PM, Cooper NR, Bruneau R, Remple M (2004) Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. J Neurosci 24:628–633

    Article  CAS  PubMed  Google Scholar 

  • Klintsova AY, Dickson E, Yoshida R, Greenough WT (2004) Altered expression of BDNF and its high-affinity receptor TrkB in response to complex motor learning and moderate exercise. Brain Res 1028:92–104

    Article  CAS  PubMed  Google Scholar 

  • Kramer AF, Erickson KI (2007) Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function. Trends Cogn Sci 11:342–348

    Article  PubMed  Google Scholar 

  • Kumpulainen S, Mrachacz-Kersting N, Peltonen J, Voigt M, Avela J (2012) The optimal interstimulus interval and repeatability of paired associative stimulation when the soleus muscle is targeted. Exp Brain Res 221:241–249

    Article  PubMed  Google Scholar 

  • Milton J, Solodkin A, Hluštík P, Small SL (2007) The mind of expert motor performance is cool and focused. Neuroimage 35:804–813

    Article  PubMed  Google Scholar 

  • Monfils MH, Plautz EJ, Kleim JA (2005) In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience. Neuroscientist 11:471–483

    Article  PubMed  Google Scholar 

  • Mrachacz-Kersting N, Fong M, Murphy BA, Sinkjaer T (2007) Changes in excitability of the cortical projections to the human tibialis anterior after paired associative stimulation. J Neurophysiol 97:1951–1958

    Article  CAS  PubMed  Google Scholar 

  • Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM (1996) Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 16:785–807

    CAS  PubMed  Google Scholar 

  • Oya T, Riek S, Cresswell AG (2009) Recruitment and rate coding organisation for soleus motor units across entire range of voluntary isometric plantar flexions. J Physiol 587:4737–4748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Plautz EJ, Milliken GW, Nudo RJ (2000) Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem 74:27–55

    Article  CAS  PubMed  Google Scholar 

  • Ridding MC, Ziemann U (2010) Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J Physiol 588:2291–2304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosenkranz K, Kacar A, Rothwell JC (2007a) Differential modulation of motor cortical plasticity and excitability in early and late phases of human motor learning. J Neurosci 27:12058–12066

    Article  CAS  PubMed  Google Scholar 

  • Rosenkranz K, Williamon A, Rothwell JC (2007b) Motorcortical excitability and synaptic plasticity is enhanced in professional musicians. J Neurosci 27:5200–5206

    Article  CAS  PubMed  Google Scholar 

  • Sanes JN, Donoghue JP (2000) Plasticity and primary motor cortex. Annu Rev Neurosci 23:393–415

    Article  CAS  PubMed  Google Scholar 

  • Schubert M, Beck S, Taube W, Amtage F, Faist M, Gruber M (2008) Balance training and ballistic strength training are associated with task-specific corticospinal adaptations. Eur J Neurosci 27:2007–2018

    Article  CAS  PubMed  Google Scholar 

  • Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123:572–584

    Article  PubMed  Google Scholar 

  • Stefan K, Wycislo M, Classen J (2004) Modulation of associative human motor cortical plasticity by attention. J Neurophysiol 92:66–72

    Article  PubMed  Google Scholar 

  • Stefan K, Wycislo M, Gentner R, Schramm A, Naumann M, Reiners K, Classen J (2006) Temporary occlusion of associative motor cortical plasticity by prior dynamic motor training. Cereb Cortex 16:376–385

    Article  PubMed  Google Scholar 

  • Thomas AG, Dennis A, Bandettini PA, Johansen-Berg H (2012) The effects of aerobic activity on brain structure. Front Psychol 3:86

    Article  PubMed Central  PubMed  Google Scholar 

  • Vaalto S, Julkunen P, Saisanen L, Kononen M, Maatta S, Karhu J (2013) Long-term plasticity may be manifested as reduction or expansion of cortical representations of actively used muscles in motor skill specialists. Neuro Report 24:596–600

    Google Scholar 

  • Vaynman S, Gomez-Pinilla F (2005) License to run: exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabil Neural Repair 19:283–295

    Article  PubMed  Google Scholar 

  • Wikgren J, Mertikas GG, Raussi P, Tirkkonen R, Äyräväinen L, Pelto-Huikko M, Koch LG, Britton SL, Kainulainen H (2012) Selective breeding for endurance running capacity affects cognitive but not motor learning in rats. Physiol Behav 106:95–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu T, Kansaku K, Hallett M (2004) How self-initiated memorized movements become automatic: a functional MRI study. J Neurophysiol 91:1690–1698

    Article  PubMed  Google Scholar 

  • Zehr PE (2002) Considerations for use of the Hoffmann reflex in exercise studies. Eur J ApplPhysiol 86:455–468

    Google Scholar 

  • Ziemann U, Ilic TV, Pauli C, Meintzschel F, Ruge D (2004) Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex. J Neurosci 24:1666–1672

    Article  CAS  PubMed  Google Scholar 

  • Ziemann U, Paulus W, Nitsche MA et al (2008) Consensus: motor cortex plasticity protocols. Brain Stimul 1:164–182

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the subjects who participated in the study and to the laboratory staff from the Neuromuscular Research Center (Department of Biology of Physical Activity) of the University of Jyväskylä, Finland, for their valuable contributions to this project.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Kumpulainen.

Additional information

Communicated by Dick F. Stegeman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumpulainen, S., Avela, J., Gruber, M. et al. Differential modulation of motor cortex plasticity in skill- and endurance-trained athletes. Eur J Appl Physiol 115, 1107–1115 (2015). https://doi.org/10.1007/s00421-014-3092-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-3092-6

Keywords

Navigation