Skip to main content
Log in

The effect of muscle fatigue on stimulus intensity requirements for central and peripheral fatigue quantification

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The present study was designed to determine the stimulation intensity necessary for an adequate assessment of central and peripheral components of neuromuscular fatigue of the knee extensors.

Methods

Three different stimulation intensities (100, 120 and 150 % of the lowest intensity evoking a plateau in M-waves and twitch amplitudes, optimal stimulation intensity, OSI) were used to assess voluntary activation level (VAL) as well as M-wave, twitch and doublet amplitudes before, during and after an incremental isometric exercise performed by 14 (8 men) healthy and physically active volunteers. A visual analog scale was used to evaluate the associated discomfort.

Results

There was no difference (p > 0.05) in VAL between the three intensities before and after exercise. However, we found that stimulating at 100 % OSI may overestimate the extent of peripheral fatigue during exercise, whereas 150 % OSI stimulations led to greater discomfort associated with doublet stimulations as well as to an increased antagonist co-activation compared to 100 % OSI.

Conclusion

We recommend using 120 % OSI, as it constitutes a good trade-off between discomfort and reliable measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BF:

Biceps femoris

EMG:

Electromyography

MVC:

Maximal Voluntary Contraction

OSI:

Optimal Stimulation Intensity

RF:

Rectus femoris

RMS:

Root Mean Square

RMS/M:

RMS normalized by the M-wave amplitude

VAL:

Voluntary Activation Level

VL:

Vastus lateralis

VM:

Vastus medialis

References

  • Adam A, De Luca CJ (2005) Firing rates of motor units in human vastus lateralis muscle during fatiguing isometric contractions. J Appl Physiol 99(1):268–280

    Article  PubMed  Google Scholar 

  • Allen GM, Gandevia SC, McKenzie DK (1995) Reliability of measurements of muscle strength and voluntary activation using twitch interpolation. Muscle Nerve 18(6):593–600

    Article  CAS  PubMed  Google Scholar 

  • Alon G (1985) High voltage stimulation. Effects of electrode size on basic excitatory responses. Phys Ther 65(6):890–895

    CAS  PubMed  Google Scholar 

  • Amann M (2011) Central and peripheral fatigue: interaction during cycling exercise in humans. Med Sci Sports Exerc 43(11):2039–2045

    Article  PubMed  Google Scholar 

  • Babault N, Pousson M, Ballay Y, Van Hoecke J (2001) Activation of human quadriceps femoris during isometric, concentric, and eccentric contractions. J Appl Physiol 91(6):2628–2634

    CAS  PubMed  Google Scholar 

  • Bachasson D, Millet GY, Decorte N, Wuyam B, Levy P, Verges S (2013) Quadriceps function assessment using an incremental test and magnetic neurostimulation: a reliability study. J Electromyogr Kinesiol 23(3):649–658

    Article  PubMed  Google Scholar 

  • Bampouras TM, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN (2012) Is maximum stimulation intensity required in the assessment of muscle activation capacity? J Electromyogr Kinesiol 22(6):873–877

    Article  PubMed  Google Scholar 

  • Behm DG, St-Pierre DM, Perez D (1996) Muscle inactivation: assessment of interpolated twitch technique. J Appl Physiol 81:2267–2273

    CAS  PubMed  Google Scholar 

  • Bigland-Ritchie B, Furbush F, Woods JJ (1986) Fatigue of intermittent submaximal voluntary contractions: central and peripheral factors. J Appl Physiol 61(2):421–429

    CAS  PubMed  Google Scholar 

  • Burke D (2002) Effects of activity on axonal excitability: implications for motor control studies. Adv Exp Med Biol 508:33–37

    Article  PubMed  Google Scholar 

  • Butler JE, Taylor JL, Gandevia SC (2003) Responses of human motoneurons to corticospinal stimulation during maximal voluntary contractions and ischemia. J Neurosci 23(32):10224–10230

    CAS  PubMed  Google Scholar 

  • Button DC, Behm DG (2008) The effect of stimulus anticipation on the interpolated twitch technique. J Sports Sci Med 7:520–524

    PubMed Central  PubMed  Google Scholar 

  • Edwards RH, Hill DK, Jones DA, Merton PA (1977) Fatigue of long duration in human skeletal muscle after exercise. J Physiol 272(3):769–778

    CAS  PubMed  Google Scholar 

  • Elias LJ, Bryden MP, Bulman-Fleming MB (1998) Footedness is a better predictor than is handedness of emotional lateralization. Neuropsychologia 36(1):37–43

    Article  CAS  PubMed  Google Scholar 

  • Folland JP, Williams AG (2007) Methodological issues with the interpolated twitch technique. J Electromyogr Kinesiol 17(3):317–327

    Article  PubMed  Google Scholar 

  • Froyd C, Millet GY, Noakes TD (2013) The development of peripheral fatigue and short-term recovery during self-paced high-intensity exercise. J Physiol 591:1339–1346

    Article  PubMed  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81(4):1725–1789

    CAS  PubMed  Google Scholar 

  • Gondin J, Guette M, Jubeau M, Ballay Y, Martin A (2006) Central and peripheral contributions to fatigue after electrostimulation training. Med Sci Sports Exerc 38(6):1147–1156

    Article  PubMed  Google Scholar 

  • Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA (2000) Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. J Appl Physiol 88(6):2131–2137

    CAS  PubMed  Google Scholar 

  • Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10(5):361–374

    Article  CAS  PubMed  Google Scholar 

  • Hicks A, Fenton J, Garner S, McComas AJ (1989) M wave potentiation during and after muscle activity. J Appl Physiol 66(6):2606–2610

    CAS  PubMed  Google Scholar 

  • Kernell D, Monster AW (1982a) Time course and properties of late adaptation in spinal motoneurones of the cat. Exp Brain Res 46(2):191–196

    Article  CAS  PubMed  Google Scholar 

  • Kernell D, Monster AW (1982b) Motoneurone properties and motor fatigue. An intracellular study of gastrocnemius motoneurones of the cat. Exp Brain Res 46(2):197–204

    Article  CAS  PubMed  Google Scholar 

  • Klass M, Roelands B, Levenez M, Fontenelle V, Pattyn N, Meeusen R, Duchateau J (2012) Effects of noradrenaline and dopamine on supraspinal fatigue in well-trained men. Med Sci Sports Exerc 44(12):2299–2308

    Article  CAS  PubMed  Google Scholar 

  • Kooistra RD, de Ruiter CJ, de Haan A (2007) Conventionally assessed voluntary activation does not represent relative voluntary torque production. Eur J Appl Physiol 100(3):309–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kubo K, Tsunoda N, Kanehisa H, Fukunaga T (2004) Activation of agonist and antagonist muscles at different joint angles during maximal isometric efforts. Eur J Appl Physiol 91(2–3):349–352

    Article  PubMed  Google Scholar 

  • Kufel TJ, Pineda LA, Mador MJ (2002) Comparison of potentiated and unpotentiated twitches as an index of muscle fatigue. Muscle Nerve 25(3):438–444

    Article  PubMed  Google Scholar 

  • Lagerquist O, Collins DF (2010) Influence of stimulus pulse width on M-waves, H-reflexes, and torque during tetanic low-intensity neuromuscular stimulation. Muscle Nerve 42(6):886–893

    Article  PubMed  Google Scholar 

  • Lévénez M, Kotzamanidis C, Carpentier A, Duchateau J (2005) Spinal reflexes and coactivation of ankle muscles during a submaximal fatiguing contraction. J Appl Physiol 99:1182–1188

    Article  PubMed  Google Scholar 

  • Löscher WN, Cresswell AG, Thorstensson A (1996) Central fatigue during a long-lasting submaximal contraction of the triceps surae. Exp Brain Res 108(2):305–314

    Article  PubMed  Google Scholar 

  • Marcora SM, Staiano W (2010) The limit to exercise tolerance in humans: mind over muscle? Eur J Appl Physiol 109(4):763–770

    Article  PubMed  Google Scholar 

  • Martin V, Millet GY, Martin A, Deley G, Lattier G (2004) Assessment of low-frequency fatigue with two methods of electrical stimulation. J Appl Physiol 97(5):1923–1929

    Article  CAS  PubMed  Google Scholar 

  • Merton PA (1954) Voluntary strength and fatigue. J Physiol 123(3):553–564

    CAS  PubMed  Google Scholar 

  • Millet GY (2011) Can neuromuscular fatigue explain running strategies and performance in ultra-marathons?: the flush model. Sports Med 41(6):489–506

    Article  PubMed  Google Scholar 

  • Millet GY, Lepers R (2004) Alterations of neuromuscular function after prolonged running, cycling and skiing exercises. Sports Med 34(2):105–116

    Article  PubMed  Google Scholar 

  • Millet GY, Martin V, Martin A, Vergès S (2011a) Electrical stimulation for testing neuromuscular function: from sport to pathology. Eur J Appl Physiol 111(10):2489–2500

    Article  PubMed  Google Scholar 

  • Millet GY, Tomazin K, Verges S, Vincent C, Bonnefoy R, Boisson RC, Gergele L, Feasson L, Martin V (2011b) Neuromuscular consequences of an extreme mountain ultra-marathon. PLoS ONE 6(2):1–14

    Article  Google Scholar 

  • Millet GY, Bachasson D, Temesi J, Wuyam B, Feasson L, Verges S, Levy P (2012) Potential interests and limits of magnetic and electrical stimulation techniques to assess neuromuscular fatigue. Neuromuscul Disord 22(Suppl 3):S181–S186

    Article  PubMed  Google Scholar 

  • Neyroud D, Maffiuletti NA, Kayser B, Place N (2012) Mechanisms of Fatigue and Task Failure Induced By Sustained Submaximal Contractions. Med Sci Sports Exerc 44:1243–1251

    Article  PubMed  Google Scholar 

  • Neyroud D, Ruttimann J, Mannion AF, Millet GY, Maffiuletti NA, Kayser B, Place N (2013) Comparison of neuromuscular adjustments associated with sustained isometric contractions of four different muscle groups. J Appl Physiol 114:1426–1434

    Article  PubMed  Google Scholar 

  • Perrey S, Racinais S, Saimouaa K, Girard O (2010) Neural and muscular adjustments following repeated running sprints. Eur J Appl Physiol 109(6):1027–1036

    Article  PubMed  Google Scholar 

  • Place N, Maffiuletti NA, Ballay Y, Lepers R (2005) Twitch potentiation is greater after a fatiguing submaximal isometric contraction performed at short vs. long quadriceps muscle length. J Appl Physiol 98(2):429–436

    Article  PubMed  Google Scholar 

  • Place N, Maffiuletti NA, Martin A, Lepers R (2007) Assessment of the reliability of central and peripheral fatigue after sustained maximal voluntary contraction of the quadriceps muscle. Muscle Nerve 35:486–495

    Article  PubMed  Google Scholar 

  • Place N, Casartelli N, Glatthorn JF, Maffiuletti NA (2010a) Comparison of quadriceps inactivation between nerve and muscle stimulation. Muscle Nerve 42(6):894–900

    Article  PubMed  Google Scholar 

  • Place N, Yamada T, Bruton JD, Westerblad H (2010b) Muscle fatigue: from observations in humans to underlying mechanisms studied in intact single muscle fibres. Eur J Appl Physiol 110:1–15

    Article  PubMed  Google Scholar 

  • Rassier DE, Macintosh BR (2000) Coexistence of potentiation and fatigue in skeletal muscle. Braz J Med Biol Res 33(5):499–508

    Article  CAS  PubMed  Google Scholar 

  • Requena B, Gapeyeva H, Garcia I, Ereline J, Paasuke M (2008) Twitch potentiation after voluntary versus electrically induced isometric contractions in human knee extensor muscles. Eur J Appl Physiol 104(3):463–472

    Article  PubMed  Google Scholar 

  • Rodriguez-Falces J, Maffiuletti NA, Place N (2013) Twitch and M-wave potentiation induced by intermittent maximal voluntary quadriceps contractions: Differences between direct quadriceps and femoral nerve stimulation. Muscle Nerve. doi:10.1002/mus.23856

  • Rupp T, Jubeau M, Wuyam B, Perrey S, Levy P, Millet GY, Verges S (2012) Time-dependent effect of acute hypoxia on corticospinal excitability in healthy humans. J Neurophysiol 108(5):1270–1277

    Article  CAS  PubMed  Google Scholar 

  • Rutherford OM, Jones DA, Newham DJ (1986) Clinical and experimental application of the percutaneous twitch superimposition technique for the study of human muscle activation. J Neurol Neurosurg Psychiatry 49(11):1288–1291

    Article  CAS  PubMed  Google Scholar 

  • Sale D, Quinlan J, Marsh E, McComas AJ, Belanger AY (1982) Influence of joint position on ankle plantarflexion in humans. J Appl Physiol 52(6):1636–1642

    CAS  PubMed  Google Scholar 

  • Sidhu SK, Bentley DJ, Carroll TJ (2009) Locomotor exercise induces long-lasting impairments in the capacity of the human motor cortex to voluntarily activate knee extensor muscles. J Appl Physiol 106(2):556–565

    Article  PubMed  Google Scholar 

  • Sogaard K, Gandevia SC, Todd G, Petersen NT, Taylor JL (2006) The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles. J Physiol 573:511–523

    Article  PubMed  Google Scholar 

  • Staehli S, Glatthorn JF, Casartelli N, Maffiuletti NA (2010) Test-retest reliability of quadriceps muscle function outcomes in patients with knee osteoarthritis. J Electromyogr Kinesiol 20(6):1058–1065

    Article  PubMed  Google Scholar 

  • Strojnik V, Komi PV (1998) Neuromuscular fatigue after maximal stretch-shortening cycle exercise. J Appl Physiol 84(1):344–350

    CAS  PubMed  Google Scholar 

  • Swart J, Lamberts RP, Lambert MI, Lambert EV, Woolrich RW, Johnston S, Noakes TD (2009) Exercising with reserve: exercise regulation by perceived exertion in relation to duration of exercise and knowledge of endpoint. Br J Sports Med 43(10):775–781

    Article  CAS  PubMed  Google Scholar 

  • Temesi J, Arnal PJ, Davranche K, Bonnefoy R, Levy P, Verges S, Millet GY (2013) Does Central Fatigue Explain Reduced Cycling after Complete Sleep Deprivation? Med Sci Sports Exerc. doi:10.1249/MSS.0b013e31829ce379

  • Vagg R, Mogyoros I, Kiernan MC, Burke D (1998) Activity-dependent hyperpolarization of human motor axons produced by natural activity. J Physiol 507:919–925

    Article  CAS  PubMed  Google Scholar 

  • Wüst RC, Morse CI, de Haan A, Rittweger J, Jones DA, Degens H (2008) Skeletal muscle properties and fatigue resistance in relation to smoking history. Eur J Appl Physiol 104(1):103–110

    Article  PubMed Central  PubMed  Google Scholar 

  • Zory R, Boerio D, Jubeau M, Maffiuletti NA (2005) Central and peripheral fatigue of the knee extensor muscles induced by electromyostimulation. Int J Sports Med 26(10):847–853

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the De Reuter foundation and the Geneva Academic Society. The authors thank all the subjects who volunteered to participate and Marc Buclin for the design and conception of the ergometer.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Place.

Additional information

Communicated by Toshio Moritani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neyroud, D., Vallotton, A., Millet, G.Y. et al. The effect of muscle fatigue on stimulus intensity requirements for central and peripheral fatigue quantification. Eur J Appl Physiol 114, 205–215 (2014). https://doi.org/10.1007/s00421-013-2760-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-013-2760-2

Keywords

Navigation