European Journal of Applied Physiology

, Volume 106, Issue 3, pp 415–423

Chronic resistance training decreases MuRF-1 and Atrogin-1 gene expression but does not modify Akt, GSK-3β and p70S6K levels in rats

  • Nelo Eidy Zanchi
  • Mário Alves de Siqueira Filho
  • Fabio Santos Lira
  • José Cesar Rosa
  • Alex Shimura Yamashita
  • Carla Roberta de Oliveira Carvalho
  • Marilia Seelaender
  • Antonio Herbert Lancha-Jr
Original Article

DOI: 10.1007/s00421-009-1033-6

Cite this article as:
Zanchi, N.E., de Siqueira Filho, M.A., Lira, F.S. et al. Eur J Appl Physiol (2009) 106: 415. doi:10.1007/s00421-009-1033-6

Abstract

Long-term adaptation to resistance training is probably due to the cumulative molecular effects of each exercise session. Therefore, we studied in female Wistar rats the molecular effects of a chronic resistance training regimen (3 months) leading to skeletal muscle hypertrophy in the plantaris muscle. Our results demonstrated that muscle proteolytic genes MuRF-1 and Atrogin-1 were significantly decreased in the exercised group measured 24 h after the last resistance exercise session (41.64 and 61.19%, respectively; P < 0.05). Nonetheless, when measured at the same time point, 4EBP-1, GSK-3β and eIF2Bε mRNA levels and Akt, GSK-3β and p70S6K protein levels (regulators of translation initiation) were not modified. Such data suggests that if gene transcription constitutes a control point in the protein synthesis pathway this regulation probably occurs in early adaptation periods or during extreme situations leading to skeletal muscle remodeling. However, proteolytic gene expression is modified even after a prolonged resistance training regimen leading to moderate skeletal muscle hypertrophy.

Keywords

HypertrophyProtein synthesisProteolysisSkeletal muscle

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Nelo Eidy Zanchi
    • 1
    • 3
  • Mário Alves de Siqueira Filho
    • 2
  • Fabio Santos Lira
    • 3
    • 5
  • José Cesar Rosa
    • 5
  • Alex Shimura Yamashita
    • 4
  • Carla Roberta de Oliveira Carvalho
    • 2
  • Marilia Seelaender
    • 3
  • Antonio Herbert Lancha-Jr
    • 1
  1. 1.Laboratory of Applied Nutrition and Metabolism, Physical Education and Sport SchoolUniversity of Sao PauloSão PauloBrazil
  2. 2.Department of Physiology and Biophysics, Institute of Biomedical SciencesUniversity of Sao PauloSão PauloBrazil
  3. 3.Molecular Biology of the Cell Group, Institute of Biomedical SciencesUniversity of Sao PauloSão PauloBrazil
  4. 4.Department of Cell and Developmental Biology, Institute of Biomedical SciencesUniversity of Sao PauloSão PauloBrazil
  5. 5.Department of Physiology, Division of Nutrition PhysiologySão Paulo Federal University (UNIFESP)São PauloBrazil