Skip to main content
Log in

Effect of 5 weeks horizontal bed rest on human muscle thickness and architecture of weight bearing and non-weight bearing muscles

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate the changes in thickness, fascicle length (L f) and pennation angle (θ) of the antigravity gastrocnemius medialis (GM) and vastus lateralis (VL) muscles, and the non-antigravity tibialis anterior (TA) and biceps brachii (BB) muscles measured by ultrasonography in ten healthy males (aged 22.3 ± 2.2 years) in response to 5 weeks of horizontal bed rest (BR). After BR, muscle thickness decreased by 12.2 ± 8.8% (P < 0.05) and 8.0 ± 9.1% (P < 0.005) in the GM and VL, respectively. No changes were observed in the TA and BB muscles. L f and θ decreased by 4.8 ± 5.0% (P < 0.05) and 14.3 ± 6.8% (P < 0.005) in the GM and by 5.9 ± 5.3% (P < 0.05) and 13.5 ± 16.2% (P < 0.005) in the VL, again without any changes in the TA and BB muscles. The finding that amongst the antigravity muscles of the lower limbs, the GM deteriorated to a greater extent than the VL is possibly related to the differences in relative load that this muscle normally experiences during daily loading. The dissimilar response in antigravity and non-antigravity muscles to unloading likely reflects differences in loading under normal conditions. The significant structural alterations of the GM and VL muscles highlight the rapid remodelling of muscle architecture occurring with disuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Assuming that all other conditions remain constant (see comments on tendon below), the degree of sarcomere shortening is different in fascicles that contain more sarcomeres in series (i.e. longer fascicles) than in fascicles that contain fewer sarcomeres in series (i.e. shorter fascicles) during an isometric contraction in which the muscle shortens to a certain length, the shorter fascicle (containing fewer sarcomeres in series) shortens by a smaller amount than the longer fascicle to reach the same absolute contracted muscle length; that is: to reach the same absolute muscle-tendon complex length, each sarcomere of the longer fibre will have to shorten more than the sarcomere of a shorter fibre. Therefore, the removal of sarcomeres in series would result in a right shift of the sarcomere length-tension relationship (Gans and Bock 1965). The effect of this reduced sarcomere shortening on the force production of the muscle depends upon whether the muscle operates at the plateau region, the ascending or descending limb of the force–length relationship at that muscle-tendon length (or joint angle) (Gordon et al. 1966). If the muscle operates close to the optimum region (L0, i.e. resting length), then reduced sarcomere sortening will cause the sarcomere to operate further away from its optimum length. It has been shown that in vivo the VL operates across the optimum region and the early portion of the descending limb (Reeves et al. 2004). It may be thus put forward that a decrease in sarcomere number would result in lesser fascicle shortening (i.e. the sarcomere would be at a longer length) which would shift the sarcomere-length tension relation to the right, away from the optimum length. However, it is known that tendon stiffness decreases with prolonged unloading (Reeves et al. 2005; de Boer et al. 2007), which would cause a left-shift of the sarcomere length–tension relationship. This adaptation may partly mitigate the effect of reduced fascicle length on muscle force production.

References

  • Adams GR, Hather BM, Dudley GA (1994) Effect of short-term unweighting on human skeletal muscle strength and size. Aviat Space Environ Med 65:1116–1121

    PubMed  CAS  Google Scholar 

  • Adams GR, Haddad F, McCue SA, Bodell PW, Zeng M, Qin L, Qin AX, Baldwin KM (2000) Effects of spaceflight and thyroid deficiency on rat hindlimb development. II. Expression of MHC isoforms. J Appl Physiol 88:904–916

    PubMed  CAS  Google Scholar 

  • Adams GR, Caiozzo VJ, Baldwin KM (2003) Skeletal muscle unweighting: spaceflight and ground-based models. J Appl Physiol 95:2185–2201

    PubMed  Google Scholar 

  • Akima H, Kawakami Y, Kubo K, Sekiguchi C, Ohshima H, Miyamoto A, Fukunaga T (2000) Effect of short-duration spaceflight on thigh and leg muscle volume. Med Sci Sports Exerc 32:1743–1747

    Article  PubMed  CAS  Google Scholar 

  • Akima H, Kubo K, Imai M, Kanehisa H, Suzuki Y, Gunji A, Fukunaga T (2001) Inactivity and muscle: effect of resistance training during bed rest on muscle size in the lower limb. Acta Physiol Scand 172:269–278

    Article  PubMed  CAS  Google Scholar 

  • Alkner BA, Tesch PA (2004a) Efficacy of a gravity-independent resistance exercise device as a countermeasure to muscle atrophy during 29-day bed rest. Acta Physiol Scand 181:345–357

    Article  PubMed  CAS  Google Scholar 

  • Alkner BA, Tesch PA (2004b) Knee extensor and plantar flexor muscle size and function following 90 days of bed rest with or without resistance exercise. Eur J Appl Physiol 93:294–305

    Article  PubMed  Google Scholar 

  • Antonutto G, Capelli C, Girardis M, Zamparo P, di Prampero PE (1999) Effects of microgravity on maximal power of lower limbs during very short efforts in humans. J Appl Physiol 86:85–92

    PubMed  CAS  Google Scholar 

  • Baldwin KM (1996) Effects of altered loading states on muscle plasticity: what have we learned from rodents? Med Sci Sports Exerc 28:S101–S106

    PubMed  CAS  Google Scholar 

  • Berg HE, Dudley GA, Haggmark T, Ohlsen H, Tesch PA (1991) Effects of lower limb unloading on skeletal muscle mass and function in humans. J Appl Physiol 70:1882–1885

    Article  PubMed  CAS  Google Scholar 

  • Berry P, Berry I, Manelfe C (1993) Magnetic resonance imaging evaluation of lower limb muscles during bed rest—a microgravity simulation model. Aviat Space Environ Med 64:212–218

    PubMed  CAS  Google Scholar 

  • Bleakney R, Maffulli N (2002) Ultrasound changes to intramuscular architecture of the quadriceps following intramedullary nailing. J Sports Med Phys Fitness 42:120–125

    PubMed  CAS  Google Scholar 

  • Caiozzo VJ, Baker MJ, Herrick RE, Tao M, Baldwin KM (1994) Effect of spaceflight on skeletal muscle: mechanical properties and myosin isoform content of a slow muscle. J Appl Physiol 76:1764–1773

    Article  PubMed  CAS  Google Scholar 

  • Caiozzo VJ, Haddad F, Baker MJ, Herrick RE, Prietto N, Baldwin KM (1996) Microgravity-induced transformations of myosin isoforms and contractile properties of skeletal muscle. J Appl Physiol 81:123–132

    PubMed  CAS  Google Scholar 

  • de Boer MD, Maganaris CN, Seynnes OR, Rennie MJ, Narici MV (2007a) Time course of muscular, neural and tendinous adaptations to 23 day unilateral lower-limb suspension in young men. J Physiol 583:1079–1091

    Article  PubMed  Google Scholar 

  • de Boer MD, Selby A, Atherton P, Smith K, Seynnes OR, Maganaris CN, Maffulli N, Movin T, Narici MV, Rennie MJ (2007b) The temporal responses of protein synthesis, gene expression and cell signalling in human quadriceps muscle and patellar tendon to disuse. J Physiol 585:241–251

    Article  PubMed  Google Scholar 

  • di Prampero PE, Narici MV (2003) Muscles in microgravity: from fibres to human motion. J Biomech 36:403–412

    Article  PubMed  Google Scholar 

  • Duchateau J (1995) Bed rest induces neural and contractile adaptations in triceps surae. Med Sci Sports Exerc 27:1581–1589

    PubMed  CAS  Google Scholar 

  • Ericson MO, Nisell R, Ekholm J (1986) Quantified electromyography of lower-limb muscles during level walking. Scand J Rehabil Med 18:159–163

    PubMed  CAS  Google Scholar 

  • Ferrando AA, Lane HW, Stuart CA, Davis-Street J, Wolfe RR (1996) Prolonged bed rest decreases skeletal muscle and whole body protein synthesis. Am J Physiol 270:E627–633

    PubMed  CAS  Google Scholar 

  • Ferrando AA, Paddon-Jones D, Wolfe RR (2002) Alterations in protein metabolism during space flight and inactivity. Nutrition 18:837–841

    Article  PubMed  CAS  Google Scholar 

  • Fitts RH, Romatowski JG, Peters JR, Paddon-Jones D, Wolfe RR, Ferrando AA (2007) The deleterious effects of bed rest on human skeletal muscle fibers are exacerbated by hypercortisolemia and ameliorated by dietary supplementation. Am J Physiol Cell Physiol 293:C313–C320

    Article  PubMed  CAS  Google Scholar 

  • Fluck M, Carson JA, Gordon SE, Ziemiecki A, Booth FW (1999) Focal adhesion proteins FAK and paxillin increase in hypertrophied skeletal muscle. Am J Physiol 277:C152–C162

    PubMed  CAS  Google Scholar 

  • Friederich JA, Brand RA (1990) Muscle fiber architecture in the human lower limb. J Biomech 23:91–95

    Article  PubMed  CAS  Google Scholar 

  • Gans C, Bock WJ (1965) The functional significance of muscle architecture–a theoretical analysis. Ergeb Anat Entwicklungsgesch 38:115–142

    PubMed  CAS  Google Scholar 

  • Gibson JN, Halliday D, Morrison WL, Stoward PJ, Hornsby GA, Watt PW, Murdoch G, Rennie MJ (1987) Decrease in human quadriceps muscle protein turnover consequent upon leg immobilization. Clin Sci (Lond) 72:503–509

    CAS  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184:170–192

    PubMed  CAS  Google Scholar 

  • Hather BM, Adams GR, Tesch PA, Dudley GA (1992) Skeletal muscle responses to lower limb suspension in humans. J Appl Physiol 72:1493–1498

    PubMed  CAS  Google Scholar 

  • Herbert ME, Roy RR, Edgerton VR (1988) Influence of one-week hindlimb suspension and intermittent high load exercise on rat muscles. Exp Neurol 102:190–198

    Article  PubMed  CAS  Google Scholar 

  • Huijing PA, Jaspers RT (2005) Adaptation of muscle size and myofascial force transmission: a review and some new experimental results. Scand J Med Sci Sports 15:349–380

    Article  PubMed  CAS  Google Scholar 

  • Kawakami Y, Muraoka Y, Kubo K, Suzuki Y, Fukunaga T (2000) Changes in muscle size and architecture following 20 days of bed rest. J Gravit Physiol 7:53–59

    PubMed  CAS  Google Scholar 

  • Kawakami Y, Akima H, Kubo K, Muraoka Y, Hasegawa H, Kouzaki M, Imai M, Suzuki Y, Gunji A, Kanehisa H, Fukunaga T (2001) Changes in muscle size, architecture, and neural activation after 20 days of bed rest with and without resistance exercise. Eur J Appl Physiol 84:7–12

    Article  PubMed  CAS  Google Scholar 

  • Kubo K, Akima H, Kouzaki M, Ito M, Kawakami Y, Kanehisa H, Fukunaga T (2000) Changes in the elastic properties of tendon structures following 20 days bed-rest in humans. Eur J Appl Physiol 83:463–468

    Article  PubMed  CAS  Google Scholar 

  • Larsson L, Li X, Berg HE, Frontera WR (1996) Effects of removal of weight-bearing function on contractility and myosin isoform composition in single human skeletal muscle cells. Pflugers Arch 432:320–328

    Article  PubMed  CAS  Google Scholar 

  • LeBlanc A, Rowe R, Schneider V, Evans H, Hedrick T (1995) Regional muscle loss after short duration spaceflight. Aviat Space Environ Med 66:1151–1154

    PubMed  CAS  Google Scholar 

  • LeBlanc A, Lin C, Shackelford L, Sinitsyn V, Evans H, Belichenko O, Schenkman B, Kozlovskaya I, Oganov V, Bakulin A, Hedrick T, Feeback D (2000) Muscle volume, MRI relaxation times (T2), and body composition after spaceflight. J Appl Physiol 89:2158–2164

    PubMed  CAS  Google Scholar 

  • LeBlanc AD, Schneider VS, Evans HJ, Pientok C, Rowe R, Spector E (1992) Regional changes in muscle mass following 17 weeks of bed rest. J Appl Physiol 73:2172–2178

    PubMed  CAS  Google Scholar 

  • Maganaris CN (2001) Force-length characteristics of in vivo human skeletal muscle. Acta Physiol Scand 172:279–285

    Article  PubMed  CAS  Google Scholar 

  • Maganaris CN, Reeves ND, Rittweger J, Sargeant AJ, Jones DA, Gerrits K, De Haan A (2006) Adaptive response of human tendon to paralysis. Muscle Nerve 33:85–92

    Article  PubMed  Google Scholar 

  • Narici M (1999) Human skeletal muscle architecture studied in vivo by non-invasive imaging techniques: functional significance and applications. J Electromyogr Kinesiol 9:97–103

    Article  PubMed  CAS  Google Scholar 

  • Narici M, Cerretelli P (1998) Changes in human muscle architecture in disuse-atrophy evaluated by ultrasound imaging. J Gravit Physiol 5:P73–P74

    PubMed  CAS  Google Scholar 

  • Narici MV, Maganaris CN (2007) Plasticity of the muscle-tendon complex with disuse and aging. Exerc Sport Sci Rev 35:126–134

    Article  PubMed  Google Scholar 

  • Pierotti DJ, Roy RR, Flores V, Edgerton VR (1990) Influence of 7 days of hindlimb suspension and intermittent weight support on rat muscle mechanical properties. Aviat Space Environ Med 61:205–210

    PubMed  CAS  Google Scholar 

  • Reeves NJ, Maganaris CN, Ferretti G, Narici MV (2002) Influence of simulated microgravity on human skeletal muscle architecture and function. J Gravit Physiol 9:P153–P154

    PubMed  CAS  Google Scholar 

  • Reeves ND, Narici MV, Maganaris CN (2004) In vivo human muscle structure and function: adaptations to resistance training in old age. Exp Physiol 89:675–689

    Article  PubMed  CAS  Google Scholar 

  • Reeves ND, Maganaris CN, Ferretti G, Narici MV(2005) Influence of 90-day simulated microgravity on human tendon mechanical properties and the effect of resistive countermeasures. J Appl Physiol 98:2278–2286

    Article  PubMed  CAS  Google Scholar 

  • Ruegg DG, Kakebeeke TH, Gabriel JP, Bennefeld M (2003) Conduction velocity of nerve and muscle fiber action potentials after a space mission or a bed rest. Clin Neurophysiol 114:86–93

    Article  PubMed  Google Scholar 

  • Sargeant AJ, Davies CT, Edwards RH, Maunder C, Young A (1977) Functional and structural changes after disuse of human muscle. Clin Sci Mol Med 52:337–342

    PubMed  CAS  Google Scholar 

  • Stein TP, Leskiw MJ, Schluter MD, Donaldson MR, Larina I (1999) Protein kinetics during and after long-duration spaceflight on MIR. Am J Physiol 276:E1014–E1021

    PubMed  CAS  Google Scholar 

  • Stevens L, Mounier Y, Holy X (1993) Functional adaptation of different rat skeletal muscles to weightlessness. Am J Physiol 264:R770–R776

    PubMed  CAS  Google Scholar 

  • Tabary JC, Tabary C, Tardieu C, Tardieu G, Goldspink G (1972) Physiological and structural changes in the cat’s soleus muscle due to immobilization at different lengths by plaster casts. J Physiol 224:231–244

    PubMed  CAS  Google Scholar 

  • Tesch PA, Berg HE, Bring D, Evans HJ, LeBlanc AD (2005) Effects of 17-day spaceflight on knee extensor muscle function and size. Eur J Appl Physiol 93:463–468

    Article  PubMed  Google Scholar 

  • Trappe S, Trappe T, Gallagher P, Harber M, Alkner B, Tesch P (2004) Human single muscle fibre function with 84 day bed-rest and resistance exercise. J Physiol 557:501–513

    Article  PubMed  CAS  Google Scholar 

  • Widrick JJ, Knuth ST, Norenberg KM, Romatowski JG, Bain JL, Riley DA, Karhanek M, Trappe SW, Trappe TA, Costill DL, Fitts RH (1999) Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres. J Physiol 516(Pt 3):915–930

    Article  PubMed  CAS  Google Scholar 

  • Winiarski AM, Roy RR, Alford EK, Chiang PC, Edgerton VR (1987) Mechanical properties of rat skeletal muscle after hind limb suspension. Exp Neurol 96:650–660

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are particularly grateful to the participants for their enduring efforts. The medical assistance and technical support of the Orthopaedic Hospital Valdoltra staff is also greatly acknowledged. The project was funded, in part, by Ministry of Defence of the Republic of Slovenia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten D. de Boer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Boer, M.D., Seynnes, O.R., di Prampero, P.E. et al. Effect of 5 weeks horizontal bed rest on human muscle thickness and architecture of weight bearing and non-weight bearing muscles . Eur J Appl Physiol 104, 401–407 (2008). https://doi.org/10.1007/s00421-008-0703-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0703-0

Keywords

Navigation