Skip to main content
Log in

Age-related changes in longitudinal prestress in human abdominal aorta

Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Studies on the influence of aging on the longitudinal mechanical response of elastic arteries are rare, though longitudinal behavior may have a significant effect on pressure pulse transmission. Our study was designed to elucidate how aging is reflected in changes of the longitudinal prestress, prestretch, and pretension force. The study involved ten human samples (six female and four male) of the abdominal aorta with longitudinal prestretch determined in autopsy. Cylindrical samples underwent a longitudinal elongation test in order to estimate the force necessary to attain the in situ length and to determine the corresponding axial prestress. The elastic modulus was estimated employing hyperelastic limiting chain extensibility model. It was found that pretension force, longitudinal prestress, and prestretch are negatively correlated with age. The decreased longitudinal force necessary to obtain the in situ length suggested that the decrease in the prestress occurs not only due to the age-related increase in the cross-section area. Since elastin is the main constituent responsible for bearing the prestretch, this suggests that the observed decrease in the longitudinal prestress and prestretch reflects aging-induced damage to the elastin. Finally, constitutive modeling showed that limiting chain extensibility is a concept that is suitable for describing the aging effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Horny L., Adamek T., Gultova E., Zitny R., Vesely J., Chlup H., Konvickova S.: Correlations between age, prestrain, diameter and atherosclerosis in the male abdominal aorta. J. Mech. Behav. Biomed. Mater. 4, 2128–2132 (2011). doi:10.1016/j.jmbbm.2011.07.011

    Article  Google Scholar 

  2. Learoyd B.M., Taylor M.G.: Alterations with age in the viscoelastic properties of human arterial walls. Circ. Res. 18, 278–292 (1966)

    Article  Google Scholar 

  3. Dobrin P.B., Doyle J.M.: Vascular smooth muscle and the anisotropy of dog carotid artery. Circ. Res. 27, 105–119 (1970)

    Article  Google Scholar 

  4. Schulze-Bauer C.A.J., Morth C., Holzapfel G.A.: Passive biaxial mechanical response of aged human iliac arteries. J. Biomech. Eng. 125, 395–406 (2003). doi:10.1115/1.1574331

    Article  Google Scholar 

  5. Sommer G., Regitnig P., Költringer L., Holzapfel G.A.: Biaxial mechanical properties of intact and layer-disected human carotid arteries at physiological and supraphysiological loadings. Am. J. Physiol. Heart Circ. Physiol. 298, 898–912 (2010). doi:10.1152/ajpheart.00378.2009

    Article  Google Scholar 

  6. Han H.C., Ku D.N., Vito R.P.: Arterial wall adaptation under elevated longitudinal stretch in organ culture. Ann. Biomed. Eng. 31, 403–411 (2003). doi:10.1114/1.1561291

    Article  Google Scholar 

  7. Humphrey J.D., Eberth J.F., Dye W.W., Gleason R.L.: Fundamental role of axial stress in compensatory adaptations by arteries. J. Biomech. 42, 1–8 (2009). doi:10.1016/j.jbiomech.2008.11.011

    Article  Google Scholar 

  8. Jackson Z.S., Gotlieb A.I., Langille B.L.: Wall tissue remodeling regulates longitudinal tension in arteries. Circ. Res. 90, 918–925 (2002). doi:10.1161/01.RES.0000016481.87703.CC

    Article  Google Scholar 

  9. Jackson Z.S., Dajnowiec D., Gotlieb A.I., Langille B.L.: Partial off-loading of longitudinal tension induces arterial tortuosity. Arterioscler Thromb. Vasc. Biol. 25, 957–962 (2005). doi:10.1161/01.ATV.0000161277.46464.11

    Article  Google Scholar 

  10. Lee Y.-U., Drury-Stewart D., Vito R.P., Han H.-C.: Morphologic adaptation of arterial endothelial cells to longitudinal stretch in organ culture. J. Biomech. 41, 3274–3277 (2008). doi:10.1016/j.jbiomech.2008.08.016

    Article  Google Scholar 

  11. Davis N.P., Han H.C., Wayman B., Vito R.: Sustained axial loading lengthens arteries in organ culture. Ann. Biomed. Eng. 33, 867–877 (2005). doi:10.1007/s10439-005-3488-x

    Article  Google Scholar 

  12. Dobrin P.B., Schwarcz T.H., Mirkvicka R.: Longitudinal retractive force in pressurized dog and human arteries. J. Surg. Res. 48, 116–120 (1990). doi:10.1016/0022-4804(90)90202-D

    Article  Google Scholar 

  13. Lee A.Y., Han B., Lamm S.D., Fierro C.A., Han H.-C.: Effects of elastin degradation and surrounding matrix support on artery stability. Am. J. Physiol. Heart Circ. Physiol. 302, 873–884 (2012). doi:10.1152/ajpheart.00463.2011

    Article  Google Scholar 

  14. Carta L., Wagenseil J.E., Knutsen R.H., Mariko B., Faury G., Davis E.C. et al.: Discrete contributions of elastic fiber components to arterial development and mechanical compliance. Arterioscler Thromb. Vasc. Biol. 29, 2083–2089 (2009). doi:10.1161/ATVBAHA.109.193227

    Article  Google Scholar 

  15. Wagenseil J.E., Mecham R.P.: Elastin in large artery stiffness and hypertension. J. Cardiovasc. Trans. Res. 5, 264–273 (2012). doi:10.1007/s12265-012-9349-8

    Article  Google Scholar 

  16. Langewouters G.J., Wesseling K.H., Goedhard W.J.A.: The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. J. Biomech. 17, 425–435 (1984)

    Article  Google Scholar 

  17. Han H.C., Fung Y.C.: Longitudinal strain of canine and porcine aortas. J. Biomech. 28, 637–641 (1995). doi:10.1016/0021-9290(94)00091-H

    Article  Google Scholar 

  18. Horny L., Adamek T., Chlup H., Zitny R.: Age estimation based on a combined arteriosclerotic index. Int. J. Leg. Med. 126, 321–326 (2012). doi:10.1007/s00414-011-0653-7

    Article  Google Scholar 

  19. Horny L., Adamek T., Vesely J., Chlup H., Zitny R., Konvickova S.: Age-related distribution of longitudinal pre-strain in abdominal aorta with emphasis on forensic application. Forensic. Sci. Int. 214, 18–22 (2012). doi:10.1016/j.forsciint.2011.07.007

    Article  Google Scholar 

  20. Gent A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996)

    Article  MathSciNet  Google Scholar 

  21. Ogden R.W., Saccomandi G.: Introducing mesoscopic information into constitutive equations for arterial walls. Biomech. Model Mechanobiol. 6, 333–344 (2007). doi:10.1007/s10237-006-0064-8

    Article  Google Scholar 

  22. Holzapfel G.A., Gasser T.C., Ogden R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48 (2000). doi:10.1023/A:1010835316564

    Article  MathSciNet  MATH  Google Scholar 

  23. Watton P.N., Ventikos Y., Holzapfel G.A.: Modelling the mechanical response of elastin for arterial tissue. J. Biomech. 42, 1320–1325 (2009). doi:10.1016/j.biomech.2009.03.012

    Article  Google Scholar 

  24. Svensjö S., Björck M., Gürtelschmid M., Gidlund K.D., Hellberg A., Wanhainen A.: Low prevalence of abdominal aortic aneurysm among 65-year-old swedish men indicates a change in the epidemiology of the disease. Circulation 124, 1118–1123 (2011). doi:10.1161/CIRCULATIONAHA.111.030379

    Article  Google Scholar 

  25. Collective of authors: A comparative study of the prevalence of abdominal aortic aneurysms in the United Kingdom, Denmark, and Australia. J. Med. Screen. 8, 46–50 (2001). doi:10.1136/jms.8.1.46

  26. Czech Statistical Office (2011) Annual demographical report. http://www.czso.cz/csu/2011edicniplan.nsf/publ/4003-11-r_2011

  27. Greenwald S.E.: Ageing of the conduit arteries. J. Pathol. 211, 157–172 (2007). doi:10.1002/path.2101

    Article  Google Scholar 

  28. O’Rourke M.F., Hashimoto J.: Mechanical factors in arterial aging: a clinical perspective. J. Am. Coll. Cardiol. 50, 1–13 (2007). doi:10.1016/j.jacc.2006.12.050

    Article  Google Scholar 

  29. McEniery C.M., Wilkinson I.B., Avolio A.P.: Age, hypertension and arterial function. Clin. Exp. Pharmacol. Physiol. 34, 665–671 (2007). doi:10.1111/j.1440-1681.2007.04657.x

    Article  Google Scholar 

  30. Arribas S.M., Hinek A., González M.C.: Elastic fibers and vascular structure in hypertension. Pharmacol. Therap. 111, 771–791 (2006). doi:10.1016/j.pharmthera.2005.12.003

    Article  Google Scholar 

  31. Avolio A., Jones D., Tafazzoli-Shadpour M.: Quantification of alternations in structure and function of elastin in the arterial media. Hypertension 32, 170–175 (1998)

    Article  Google Scholar 

  32. Fonck E., Feigl G.G., Fasel J., Sage D., Unser M., Rüfenacht D.A., Stergiopulos N.: Effect of aging on elastin functionality in human cerebral arteries. Stroke 40, 2552–2556 (2009). doi:10.1161/strokeaha.108.528091

    Article  Google Scholar 

  33. Jacob M.P.: Extracellular matrix remodeling and matrix metalloproteinases in the vascular wall during aging and in pathological conditions. Biomed. Pharmacother. 57, 195–202 (2003). doi:10.1016/S0753-3322(03)00065-9

    Article  Google Scholar 

  34. Greenwald S.E., Moore J.E., Rachev A., Kane T.P., Meister J.J.: Experimental investigation of the distribution of residual strains in the artery wall. J. Biomech. Eng. 119, 438–444 (1997). doi:10.1115/1.2798291

    Article  Google Scholar 

  35. Atkinson J.: Age-related medial elastocalcinosis in arteries: mechanisms, animal models, and physiological consequences. J. Appl. Physiol. 105, 1643–1651 (2008). doi:10.1152/japplphysiol.90476.2008

    Article  Google Scholar 

  36. Persy V., D’Haese P.: Vascular calcification and bone disease: the calcification paradox. Trends Mol. Med. 15, 405–416 (2009). doi:10.1016/j.molmed.2009.07.001

    Article  Google Scholar 

  37. Konova E., Baydanoff S., Atanasova M., Velkova A.: Age-related changes in the glycation of human aortic elastin. Exp. Gerontol. 39, 249–254 (2004). doi:10.1016/j.exger.2003.10.003

    Article  Google Scholar 

  38. Haskett D., Johnson G., Zhou A., Utzinger U., Vande Geest J.: Microstructural and biomechanical alternations of the human aorta as a function of age and location. Biomech. Model. Mechanobiol. 9, 725–736 (2010). doi:10.1007/s10237-010-0209-7

    Article  Google Scholar 

  39. Wuyts F.L., Vanhuyse V.J., Langewouters G.J., Decraemer W.F., Raman E.R., Buyle S.: Elastic properties of human aortas in relation to age and atherosclerosis: a structural model. Phys. Med. Biol. 40, 1577–1597 (1995)

    Article  Google Scholar 

  40. Gasser T.C., Ogden R.W., Holzapfel G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. Roy. Soc. Interface 3, 15–35 (2006). doi:10.1098/rsif.2005.0073

    Article  Google Scholar 

  41. Humphrey J.D., Holzapfel G.A.: Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J. Biomech. 45, 805–814 (2012). doi:10.1016/j.jbiomech.2011.11.021

    Article  Google Scholar 

  42. Tsamis A., Rachev A., Stergiopulos N.: A constituent-based model of age-related changes in conduit arteries. Am. J. Physiol. Heart Circ. Physiol. 301, 1286–1301 (2011). doi:10.1152/ajpheart.00570.2010

    Article  Google Scholar 

  43. Lillie M.A., Gosline J.M.: Limits to the durability of arterial elastic tissue. Biomaterials 28, 2021–2031 (2007). doi:10.1016/j.biomaterials.2007.01.016

    Article  Google Scholar 

  44. Cinthio M., Ahlgren A.R., Bergkvist J., Jansson T., Persson H.W., Lindstrom K.: Longitudinal movements and resulting shear strain of the arterial wall. Am. J. Physiol. Heart Circ. Physiol. 291, 394–402 (2006). doi:10.1152/ajpheart.00988.2005

    Article  Google Scholar 

  45. Åstrand H., Stålhand J., Karlsson J., Karlsson M., Sonesson B., Länne T.: In vivo estimation of the contribution of elastin and collagen to the mechanical properties in the human abdominal aorta: effect of age and sex. J. Appl. Physiol. 110, 176–187 (2011). doi:10.1152/japplphysiol.00579.2010

    Article  Google Scholar 

  46. Masson I., Beaussier H., Boutouyrie P., Laurent S., Humphrey J.D., Zidi M.: Carotid artery mechanical properties and stresses quantified using in vivo data from normotensive and hypertensive humans. Biomech. Model. Mechanobiol. 10, 867–882 (2011). doi:10.1007/s10237-010-0279-6

    Article  Google Scholar 

  47. Schulze-Bauer C.A.J., Holzapfel G.A.: Determination of constitutive equations for human arteries from clinical data. J. Biomech. 36, 165–169 (2003). doi:10.1016/S0021-9290(02)00367-6

    Article  Google Scholar 

  48. Stalhand J.: Determination of human arterial wall parameters from clinical data. Biomech. Model. Mechanobiol. 8, 141–148 (2009). doi:10.1007/s10237-008-0124-3

    Article  Google Scholar 

  49. Horgan C.O., Saccomandi G.: A description of arterial wall mechanics using limiting chain extensibility constitutive models. Biomech. Model. Mechanobiol. 1, 251–266 (2003). doi:10.1007/s10237-002-0022-z

    Article  Google Scholar 

  50. Destrade M., Ní Annaidh A., Coman C.D.: Bending instabilities of soft biological tissues. Int. J. Solids Struct. 46, 4322–4330 (2009). doi:10.1016/j.ijsolstr.2009.08.017

    Article  MATH  Google Scholar 

  51. Kumar, V., Abbas, A.K., Fausto, N., Aster, J.C.: Robbins and Cotran pathologic basis of disease, 8th edn. Elsevier, Philadelphia (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Horny.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (XLS 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horny, L., Adamek, T. & Zitny, R. Age-related changes in longitudinal prestress in human abdominal aorta. Arch Appl Mech 83, 875–888 (2013). https://doi.org/10.1007/s00419-012-0723-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0723-4

Keywords

Navigation