Archive of Applied Mechanics

, Volume 78, Issue 5, pp 393-407

First online:

Persoz’s gephyroidal model described by a maximal monotone differential inclusion

  • Jérôme BastienAffiliated withLaboratoire Mécatronique 3M, Équipe d’accueil A 3318, Université de Technologie de Belfort-Montbéliard Email author 
  • , Claude-Henri LamarqueAffiliated withURA 1652 CNRS, Département Génie Civil et Bâtiment, Laboratoire Géomatériaux, École Nationale des Travaux Publics de l’Etat

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Persoz’s gephyroidal model, which consists of elementary rheological models (dry friction element and linear spring), can be covered by the existence and uniqueness theory for maximal monotone operators. Moreover, classical results of numerical analysis allow one to use a numerical implicit Euler scheme, with convergence order of the scheme equal to one. Some numerical simulations are presented.


Gephyroidal model Persoz’s model Elastoplasticity Maximal monotone operator Differential inclusion