Archive of Applied Mechanics

, Volume 78, Issue 5, pp 393–407

Persoz’s gephyroidal model described by a maximal monotone differential inclusion

Original

DOI: 10.1007/s00419-007-0171-8

Cite this article as:
Bastien, J. & Lamarque, CH. Arch Appl Mech (2008) 78: 393. doi:10.1007/s00419-007-0171-8

Abstract

Persoz’s gephyroidal model, which consists of elementary rheological models (dry friction element and linear spring), can be covered by the existence and uniqueness theory for maximal monotone operators. Moreover, classical results of numerical analysis allow one to use a numerical implicit Euler scheme, with convergence order of the scheme equal to one. Some numerical simulations are presented.

Keywords

Gephyroidal modelPersoz’s modelElastoplasticityMaximal monotone operatorDifferential inclusion

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Laboratoire Mécatronique 3M, Équipe d’accueil A 3318Université de Technologie de Belfort-MontbéliardBelfort CedexFrance
  2. 2.URA 1652 CNRS, Département Génie Civil et Bâtiment, Laboratoire GéomatériauxÉcole Nationale des Travaux Publics de l’EtatVaulx-en-Velin CedexFrance