Skip to main content

Advertisement

Log in

Zooming in on single active genes in living mammalian cells

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The kinetic aspects of RNA polymerase II as it transcribes mRNA have been revealed over the past decade by use of live-cell imaging and kinetic analyses. It is now possible to visualize polymerase molecules in action, and most importantly to detect and follow the mRNA product as it is generated in real time on active genes. Questions such as the speed at which mRNAs are transcribed or the number of polymerases running along a particular gene can be addressed at high temporal resolution. These kinetic studies highlight the tight regulation that genes encounter when moving between active and inactive states, and ultimately will shed light on the kinetic aspects of transcription of genes under perturbed states. The scientific pathway along which these findings were unearthed begins with the imaging of the action of hundreds of genes working in concert in fixed cells. The state of the art has reached the capability of analyzing the transcription of single alleles in living mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrahamsson S, Chen J, Hajj B, Stallinga S, Katsov AY, Wisniewski J, Mizuguchi G, Soule P, Mueller F, Dugast Darzacq C, Darzacq X, Wu C, Bargmann CI, Agard DA, Dahan M, Gustafsson MG (2013) Fast multicolor 3D imaging using aberration-corrected multifocus microscopy. Nat Methods 10(1):60–63

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari Y, Brody Y, Kinor N, Mor A, Tsukamoto T, Spector DL, Singer RH, Shav-Tal Y (2010) The life of an mRNA in space and time. J Cell Sci 123(Pt 10):1761–1774

    Article  PubMed  CAS  Google Scholar 

  • Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2(4):437–445

    Article  PubMed  CAS  Google Scholar 

  • Beyer AL, Osheim YN (1988) Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev 2(6):754–765

    Article  PubMed  CAS  Google Scholar 

  • Boireau S, Maiuri P, Basyuk E, de la Mata M, Knezevich A, Pradet-Balade B, Backer V, Kornblihtt A, Marcello A, Bertrand E (2007) The transcriptional cycle of HIV-1 in real-time and live cells. J Cell Biol 179(2):291–304

    Article  PubMed  CAS  Google Scholar 

  • Brody Y, Shav-Tal Y (2011) Measuring the kinetics of mRNA transcription in single living cells. J Vis Exp 25(54):e2898. doi:10.3791/2898

  • Brody Y, Neufeld N, Bieberstein N, Causse SZ, Bohnlein EM, Neugebauer KM, Darzacq X, Shav-Tal Y (2011) The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing. PLoS Biol 9(1):e1000573

    Article  PubMed  CAS  Google Scholar 

  • Chubb JR, Trcek T, Shenoy SM, Singer RH (2006) Transcriptional pulsing of a developmental gene. Curr Biol 16(10):1018–1025

    Article  PubMed  CAS  Google Scholar 

  • Danko CG, Hah N, Luo X, Martins AL, Core L, Lis JT, Siepel A, Kraus WL (2013) Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells. Mol Cell 50(2):212–222

    Article  PubMed  CAS  Google Scholar 

  • Darnell JE Jr (2013) Reflections on the history of pre-mRNA processing and highlights of current knowledge: a unified picture. RNA 19(4):443–460

    Article  PubMed  CAS  Google Scholar 

  • Darzacq X, Singer RH, Shav-Tal Y (2005) Dynamics of transcription and mRNA export. Curr Opin Cell Biol 17(3):332–339

    Article  PubMed  CAS  Google Scholar 

  • Darzacq X, Shav-Tal Y, de Turris V, Brody Y, Shenoy SM, Phair RD, Singer RH (2007) In vivo dynamics of RNA polymerase II transcription. Nat Struct Mol Biol 14(9):796–806

    Article  PubMed  CAS  Google Scholar 

  • Dundr M, Hoffmann-Rohrer U, Hu Q, Grummt I, Rothblum LI, Phair RD, Misteli T (2002) A kinetic framework for a mammalian RNA polymerase in vivo. Science 298(5598):1623–1626

    Article  PubMed  CAS  Google Scholar 

  • Femino AM, Fay FS, Fogarty K, Singer RH (1998) Visualization of single RNA transcripts in situ. Science 280(5363):585–590

    Article  PubMed  CAS  Google Scholar 

  • Fusco D, Accornero N, Lavoie B, Shenoy SM, Blanchard JM, Singer RH, Bertrand E (2003) Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr Biol 13(2):161–167

    Article  PubMed  CAS  Google Scholar 

  • Hieda M, Winstanley H, Maini P, Iborra FJ, Cook PR (2005) Different populations of RNA polymerase II in living mammalian cells. Chromosom Res 13(2):135–144

    Article  CAS  Google Scholar 

  • Huranova M, Ivani I, Benda A, Poser I, Brody Y, Hof M, Shav-Tal Y, Neugebauer KM, Stanek D (2010) The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells. J Cell Biol 191(1):75–86

    Article  PubMed  CAS  Google Scholar 

  • Janicki SM, Tsukamoto T, Salghetti SE, Tansey WP, Sachidanandam R, Prasanth KV, Ried T, Shav-Tal Y, Bertrand E, Singer RH, Spector DL (2004) From silencing to gene expression; real-time analysis in single cells. Cell 116(5):683–698

    Article  PubMed  CAS  Google Scholar 

  • Kimura H, Sugaya K, Cook PR (2002) The transcription cycle of RNA polymerase II in living cells. J Cell Biol 159(5):777–782

    Article  PubMed  CAS  Google Scholar 

  • Levsky JM, Singer RH (2003) Fluorescence in situ hybridization: past, present and future. J Cell Sci 116(Pt 14):2833–2838

    Article  PubMed  CAS  Google Scholar 

  • Lionnet T, Czaplinski K, Darzacq X, Shav-Tal Y, Wells AL, Chao JA, Park HY, de Turris V, Lopez-Jones M, Singer RH (2011) A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat Methods 8(2):165–170

    Article  PubMed  CAS  Google Scholar 

  • Martins SB, Rino J, Carvalho T, Carvalho C, Yoshida M, Klose JM, de Almeida SF, Carmo-Fonseca M (2011) Spliceosome assembly is coupled to RNA polymerase II dynamics at the 3′ end of human genes. Nat Struct Mol Biol 18(10):1115–1123

    Article  PubMed  CAS  Google Scholar 

  • McNally JG, Muller WG, Walker D, Wolford R, Hager GL (2000) The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287(5456):1262–1265

    Article  PubMed  CAS  Google Scholar 

  • Miller OL Jr, Beatty BR (1969) Visualization of nucleolar genes. Science 164(3882):955–957

    Article  PubMed  Google Scholar 

  • Misteli T (2008) Physiological importance of RNA and protein mobility in the cell nucleus. Histochem Cell Biol 129(1):5–11

    Article  PubMed  CAS  Google Scholar 

  • Mor A, Suliman S, Ben-Yishay R, Yunger S, Brody Y, Shav-Tal Y (2010) Dynamics of single mRNP nucleocytoplasmic transport and export through the nuclear pore in living cells. Nat Cell Biol 12(6):543–552

    Article  PubMed  CAS  Google Scholar 

  • Muller-McNicoll M, Neugebauer KM (2013) How cells get the message: dynamic assembly and function of mRNA-protein complexes. Nat Rev Genet 14(4):275–287

    Article  PubMed  Google Scholar 

  • Muramoto T, Cannon D, Gierlinski M, Corrigan A, Barton GJ, Chubb JR (2012) Live imaging of nascent RNA dynamics reveals distinct types of transcriptional pulse regulation. Proc Natl Acad Sci U S A 109(19):7350–7355

    Article  PubMed  CAS  Google Scholar 

  • Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404(6778):604–609

    Article  PubMed  CAS  Google Scholar 

  • Rafalska-Metcalf IU, Powers SL, Joo LM, LeRoy G, Janicki SM (2010) Single cell analysis of transcriptional activation dynamics. PLoS One 5(4):e10272

    Article  PubMed  Google Scholar 

  • Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S (2006) Stochastic mRNA synthesis in mammalian cells. PLoS Biol 4(10):e309

    Article  PubMed  Google Scholar 

  • Robinett CC, Straight A, Li G, Willhelm C, Sudlow G, Murray A, Belmont AS (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol 135(6 Pt 2):1685–1700

    Article  PubMed  CAS  Google Scholar 

  • Schmidt U, Basyuk E, Robert MC, Yoshida M, Villemin JP, Auboeuf D, Aitken S, Bertrand E (2011) Real-time imaging of cotranscriptional splicing reveals a kinetic model that reduces noise: implications for alternative splicing regulation. J Cell Biol 193(5):819–829

    Article  PubMed  CAS  Google Scholar 

  • Shav-Tal Y, Darzacq X, Shenoy SM, Fusco D, Janicki SM, Spector DL, Singer RH (2004) Dynamics of single mRNPs in nuclei of living cells. Science 304(5678):1797–1800

    Article  PubMed  CAS  Google Scholar 

  • Sheinberger J, Shav-Tal Y (2013) The dynamic pathway of nuclear RNA in eukaryotes. Nucleus 4(3). http://www.landesbioscience.com/journals/nucleus/article/24434/ (in press)

  • Singh J, Padgett RA (2009) Rates of in situ transcription and splicing in large human genes. Nat Struct Mol Biol 16(11):1128–1133

    Article  PubMed  CAS  Google Scholar 

  • Spector DL (2001) Nuclear domains. J Cell Sci 114(Pt 16):2891–2893

    PubMed  CAS  Google Scholar 

  • Stenoien DL, Patel K, Mancini MG, Dutertre M, Smith CL, O’Malley BW, Mancini MA (2001) FRAP reveals that mobility of oestrogen receptor-alpha is ligand- and proteasome-dependent. Nat Cell Biol 3(1):15–23

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto T, Hashiguchi N, Janicki SM, Tumbar T, Belmont AS, Spector DL (2000) Visualization of gene activity in living cells. Nat Cell Biol 2(12):871–878

    Article  PubMed  CAS  Google Scholar 

  • Tumbar T, Sudlow G, Belmont AS (1999) Large-scale chromatin unfolding and remodeling induced by VP16 acidic activation domain. J Cell Biol 145(7):1341–1354

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Munson KM, Webb WW, Lis JT (2006) Dynamics of heat shock factor association with native gene loci in living cells. Nature 442(7106):1050–1053

    Article  PubMed  CAS  Google Scholar 

  • Yunger S, Rosenfeld L, Garini Y, Shav-Tal Y (2010) Single-allele analysis of transcription kinetics in living mammalian cells. Nat Methods 7(8):631–633

    Article  PubMed  CAS  Google Scholar 

  • Yunger S, Rosenfeld L, Garini Y, Shav-Tal Y (2013) Quantifying the transcriptional output of single alleles in single living mammalian cells. Nat Protoc 8(2):393–408

    Article  PubMed  CAS  Google Scholar 

  • Zhao R, Nakamura T, Fu Y, Lazar Z, Spector DL (2011) Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation. Nat Cell Biol 13(11):1295–1304

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Yaron Shav-Tal is supported by the European Research Council (ERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaron Shav-Tal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yunger, S., Kalo, A., Kafri, P. et al. Zooming in on single active genes in living mammalian cells. Histochem Cell Biol 140, 71–79 (2013). https://doi.org/10.1007/s00418-013-1100-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-013-1100-2

Keywords

Navigation