, Volume 121, Issue 3, pp 219-227
Date: 26 Feb 2004

Evidence for myofibril remodeling as opposed to myofibril damage in human muscles with DOMS: an ultrastructural and immunoelectron microscopic study

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The myofibrillar and cytoskeletal alterations observed in delayed onset muscle soreness (DOMS) caused by eccentric exercise are generally considered to represent damage. By contrast our recent immunohistochemical studies suggested that the alterations reflect myofibrillar remodeling (Yu and Thornell 2002; Yu et al. 2003). In the present study the same human muscle biopsies were further analyzed with transmission electron microscopy and immunoelectron microscopy. We show that the ultrastructural hallmarks of DOMS, Z-disc streaming, Z-disc smearing, and Z-disc disruption were present in the biopsies and were significantly more frequent in biopsies taken 2–3 days and 7–8 days after exercise than in those from controls and 1 h after exercise. Four main types of changes were observed: amorphous widened Z-discs, amorphous sarcomeres, double Z-discs, and supernumerary sarcomeres. We confirm by immunoelectron microscopy that the main Z-disc protein alpha-actinin is not present in Z-disc alterations or in the links of electron-dense material between Z-discs in longitudinal register. These alterations were related to an increase of F-actin and desmin, where F-actin was present within the strands of amorphous material. Desmin, on the other hand, was seen in less dense regions of the alterations. Our results strongly support that the myofibrillar and cytoskeletal alterations, considered to be the hallmarks of DOMS, reflect an adaptive remodeling of the myofibrils.